ترغب بنشر مسار تعليمي؟ اضغط هنا

High Precision Measurement of Compton Scattering in the 5 GeV region

103   0   0.0 ( 0 )
 نشر من قبل Dipangkar Dutta
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The cross section of atomic electron Compton scattering $gamma + e rightarrow gamma^prime + e^prime $ was measured in the 4.40--5.475 GeV photon beam energy region by the {em PrimEx} collaboration at Jefferson Lab with an accuracy of 2% and less. The results are consistent with theoretical predictions that include next-to-leading order radiative corrections. The measurements provide the first high precision test of this elementary QED process at beam energies greater than 0.1 GeV.



قيم البحث

اقرأ أيضاً

We report on the highest precision yet achieved in the measurement of the polarization of a low energy, $mathcal{O}$(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond micro-strip detector which was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector and its large acceptance. The polarization of the $180~mu$A, $1.16$~GeV electron beam was measured with a statistical precision of $<$~1% per hour and a systematic uncertainty of 0.59%. This exceeds the level of precision required by the qweak experiment, a measurement of the vector weak charge of the proton. Proposed future low-energy experiments require polarization uncertainty $<$~0.4%, and this result represents an important demonstration of that possibility. This measurement is also the first use of diamond detectors for particle tracking in an experiment.
152 - H.Fonvieille 2019
This review gives an update on virtual Compton scattering (VCS) off the nucleon, $gamma^* N to N gamma$, in the low-energy regime. We recall the theoretical formalism related to the generalized polarizabilities (GPs) and model predictions for these o bservables. We present the GP extraction methods that are used in the experiments: the approach based on the low-energy theorem for VCS and the formalism of Dispersion Relations. We then review the experimental results, with a focus on the progress brought by recent experimental data on proton generalized polarizabilities, and we conclude by some perspectives in the field of VCS at low energy.
126 - A. Gasparian , H. Gao , D. Dutta 2020
The PRad experiment has credibly demonstrated the advantages of the calorimetric method in e-p scattering experiments to measure the proton root-mean-square (RMS) charge radius with high accuracy. The PRad result, within its experimental uncertaintie s, is in agreement with the small radius measured in muonic hydrogen spectroscopy experiments and it was a critical input in the recent revision of the CODATA recommendation for the proton charge radius. Consequently, the PRad result is in direct conflict with all modern electron scattering experiments. Most importantly, it is 5.8% smaller than the value from the most precise electron scattering experiment to date, and this difference is about three standard deviations given the precision of the PRad experiment. As the first experiment of its kind, PRad did not reach the highest precision allowed by the calorimetric technique. Here we propose a new (and) upgraded experiment -- PRad-II, which will reduce the overall experimental uncertainties by a factor of 3.8 compared to PRad and address this as yet unsettled controversy in subatomic physics. In addition, PRad-II will be the first lepton scattering experiment to reach the Q^2 range of 10^{-5} GeV^2 allowing a more accurate and robust extraction of the proton charge radius. The muonic hydrogen result with its unprecedented precision (~0.05%) determines the CODATA value of the proton charge radius, hence, it is critical to evaluate possible systematic uncertainties of those experiments, such as the laser frequency calibration that was raised in recent review articles. The PRad-II experiment with its projected total uncertainty of 0.43% could demonstrate whether there is any systematic difference between $e-p$ scattering and muonic hydrogen results. PRad-II will establish a new precision frontier in electron scattering and open doors for future physics opportunities.
We report a direct measurement of the Q-value of the neutrinoless double-beta-decay candidate 48Ca at the TITAN Penning-trap mass spectrometer, with the result that Q = 4267.98(32) keV. We measured the masses of both the mother and daughter nuclides, and in the latter case found a 1 keV deviation from the literature value. In addition to the Q-value, we also present results of a new calculation of the neutrinoless double-beta-decay nuclear matrix element of 48Ca. Using diagrammatic many-body perturbation theory to second order to account for physics outside the valence space, we constructed an effective shell-model double-beta-decay operator, which increased the nuclear matrix element by about 75% compared with that produced by the bare operator. The new Q-value and matrix element strengthen the case for a 48Ca double-beta-decay experiment.
64 - Xu Cao , H. Lenske 2017
Compton scattering off the proton in the third resonance region is analyzed for the first time, owing to the full combined analysis of pion- and photo-induced reactions in a coupled-channel effective Lagrangian model with K-matrix approximation. Two isospin $I=3/2$ resonances $D_{33}(1700)$ and $F_{35}(1930)$ are found to be essential in the range of 1.6 - 1.8 GeV. The recent beam asymmetry data of Compton scattering from the GRAAL facility are used to determine the helicity couplings of these resonances, and strong constraints are coming also from $pi N$ and $KSigma$ photoproduction data. The possible spin and parity of new narrow resonances is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا