ﻻ يوجد ملخص باللغة العربية
We give a brief introduction to flavour physics. The first part covers the flavour structure of the Standard Model, how the Kobayashi-Maskawa mechanism is tested and provides examples of searches for new physics using flavour observables, such as meson mixing and rare decays. In the second part we give a brief overview of the recent flavour anomalies and how the Higgs can act as a new flavour probe.
In this short presentation I emphasize the increased importance of kaon flavour physics in the search for new physics (NP) that we should witness in the rest of this decade and in the next decade. The main actors will be the branching ratios for the
LHCb found hints for physics beyond the Standard Model (SM) in $Bto K^*mu^+mu^-$, $R(K)$ and $B_stophimu^+mu^-$. These intriguing hints for NP have recently been confirmed by the LHCb measurement of $R(K^*)$ giving a combined significance for NP abov
Several experiments observed deviations from the Standard Model (SM) in the flavour sector: LHCb found a $4-5,sigma$ discrepancy compared to the SM in $bto smu^+mu^-$ transitions (recently supported by an Belle analysis) and CMS reported a non-zero m
Kaon flavour physics has played in the 1960s and 1970s a very important role in the construction of the Standard Model (SM) and in the 1980s and 1990s in SM tests with the help of CP violation in $K_Ltopipi$ decays represented by $varepsilon_K$ and t
This chapter of the report of the ``Flavour in the era of the LHC Workshop discusses the theoretical, phenomenological and experimental issues related to flavour phenomena in the charged lepton sector and in flavour-conserving CP-violating processes.