ﻻ يوجد ملخص باللغة العربية
We develop a theory for the magnon Kerr effect in a cavity magnonics system, consisting of magnons in a small yttrium iron garnet (YIG) sphere strongly coupled to cavity photons, and use it to study the bistability in this hybrid system. To have a complete picture of the bistability phenomenon, we analyze two different cases in driving the cavity magnonics system, i.e., directly pumping the YIG sphere and the cavity, respectively. In both cases, the magnon frequency shifts due to the Kerr effect exhibit a similar bistable behavior but the corresponding critical powers are different. Moreover, we show how the bistability of the system can be demonstrated using the transmission spectrum of the cavity. Our results are valid in a wide parameter regime and generalize the theory of bistability in a cavity magnonics system.
We experimentally demonstrate magnon Kerr effect in a cavity-magnon system, where magnons in a small yttrium iron garnet (YIG) sphere are strongly but dispersively coupled to the photons in a three-dimensional cavity. When the YIG sphere is pumped to
Collective excitation modes in solid state systems play a central role in circuit quantum electrodynamics, cavity optomechanics, and quantum magnonics. In the latter, quanta of collective excitation modes in a ferromagnet, called magnons, interact wi
The techniques of microwave quantum optics are applied to collective spin excitations in a macroscopic sphere of ferromagnetic insulator. We demonstrate, in the single-magnon limit, strong coupling between a magnetostatic mode in the sphere and a mic
We propose to realize the pseudo-Hermiticity in a cavity magnonics system consisting of the Kittel modes in two small yttrium-iron-garnet spheres coupled to a microwave cavity mode. The effective gain of the cavity can be achieved using the coherent
We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors are emerged as sha