ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnon Kerr effect in a strongly coupled cavity-magnon system

149   0   0.0 ( 0 )
 نشر من قبل Yi-Pu Wang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate magnon Kerr effect in a cavity-magnon system, where magnons in a small yttrium iron garnet (YIG) sphere are strongly but dispersively coupled to the photons in a three-dimensional cavity. When the YIG sphere is pumped to generate considerable magnons, the Kerr effect yields a perceptible shift of the cavitys central frequency and more appreciable shifts of the magnon modes. We derive an analytical relation between the magnon frequency shift and the drive power for the uniformly magnetized YIG sphere and find that it agrees very well with the experimental results of the Kittel mode. Our study paves the way to explore nonlinear effects in the cavity-magnon system.



قيم البحث

اقرأ أيضاً

107 - Guo-Qiang Zhang , Yi-Pu Wang , 2019
We develop a theory for the magnon Kerr effect in a cavity magnonics system, consisting of magnons in a small yttrium iron garnet (YIG) sphere strongly coupled to cavity photons, and use it to study the bistability in this hybrid system. To have a co mplete picture of the bistability phenomenon, we analyze two different cases in driving the cavity magnonics system, i.e., directly pumping the YIG sphere and the cavity, respectively. In both cases, the magnon frequency shifts due to the Kerr effect exhibit a similar bistable behavior but the corresponding critical powers are different. Moreover, we show how the bistability of the system can be demonstrated using the transmission spectrum of the cavity. Our results are valid in a wide parameter regime and generalize the theory of bistability in a cavity magnonics system.
163 - Jie Zhao , Yulong Liu , Longhao Wu 2019
As the counterpart of PT symmetry, abundant phenomena and potential applications of anti-PT symmetry have been predicted or demonstrated theoretically. However, experimental realization of the coupling required in the anti-PT symmetry is difficult. H ere, by coupling two YIG spheres to a microwave cavity, the large cavity dissipation rate makes the magnons coupled dissipatively with each other, thereby obeying a two-dimensional anti-PT Hamiltonian. In terms of the magnon-readout method, a new method adopted here, we demonstrate the validity of our method in constructing an anti-PT system and present the counterintuitive level attraction process. Our work provides a new platform to explore the anti-PT symmetry properties and paves the way to study multi-magnoncavity-polariton systems.
105 - Yi Li , Wei Cao , Vivek P. Amin 2019
We experimentally identify coherent spin pumping in the magnon-magnon hybrid modes of permalloy/yttrium iron garnet (Py/YIG) bilayers. Using broadband ferromagnetic resonance, an avoided crossing is observed between the uniform mode of Py and the spi n wave mode of YIG due to the fieldlike interfacial exchange coupling. We also identify additional linewidth suppression and enhancement for the in-phase and out-of-phase hybrid modes, respectively, textcolor{black}{which can be interpreted as concerted dampinglike torque from spin pumping}. Our analysis predicts inverse proportionality of both fieldlike and dampinglike torques to the square root of the Py thickness, which quantitatively agrees with experiments.
We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors are emerged as sha rp frequency switchings of the cavity magnon-polaritons (CMPs) and related to the transition between states with large and small number of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.
We show how to generate tripartite entanglement in a cavity magnomechanical system which consists of magnons, cavity microwave photons, and phonons. The magnons are embodied by a collective motion of a large number of spins in a macroscopic ferrimagn et, and are driven directly by an electromagnetic field. The cavity photons and magnons are coupled via magnetic dipole interaction, and the magnons and phonons are coupled via magnetostrictive (radiation pressure-like) interaction. We show optimal parameter regimes for achieving the tripartite entanglement where magnons, cavity photons, and phonons are entangled with each other, and we further prove that the steady state of the system is a genuinely tripartite entangled state. The entanglement is robust against temperature. Our results indicate that cavity magnomechanical systems could provide a promising platform for the study of macroscopic quantum phenomena.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا