ﻻ يوجد ملخص باللغة العربية
The adiabatic piston problem is solved at the mesoscale using a Kinetic Theory approach. The problem is to determine the evolution towards equilibrium of two gases separated by a wall with only one degree of freedom (the adiabatic piston). A closed system of equations for the distribution functions of the gases conditioned to a position of the piston and the distribution function of the piston is derived from the Liouville equation, under the assumption of a generalized molecular chaos. It is shown that the resulting kinetic description has the canonical equilibrium as a steady-state solution. Moreover, the Boltzmann entropy, which includes the motion of the piston, verifies the $mathcal H$-theorem. The results are generalized to any short-ranged repulsive potentials among particles and include the ideal gas as a limiting case.
A simplified version of a classical problem in thermodynamics -- the adiabatic piston -- is discussed in the framework of kinetic theory. We consider the limit of gases whose relaxation time is extremely fast so that the gases contained on the left a
The motion of an adiabatic piston under dry friction is investigated to clarify the roles of dry friction in non-equilibrium steady states. We clarify that dry friction can reverse the direction of the piston motion and causes a discontinuity or a cu
We generalize Katos adiabatic theorem to nonunitary dynamics with an isospectral generator. This enables us to unify two strong-coupling limits: one driven by fast oscillations under a Hamiltonian, and the other driven by strong damping under a Lindb
Avalanching systems are treated analytically using the renormalization group (in the self-organized-criticality regime) or mean-field approximation, respectively. The latter describes the state in terms of the mean number of active and passive sites,
We present a short overview of the recent results in the theory of diffusion and wave equations with generalised derivative operators. We give generic examples of such generalised diffusion and wave equations, which include time-fractional, distribut