ﻻ يوجد ملخص باللغة العربية
A simplified version of a classical problem in thermodynamics -- the adiabatic piston -- is discussed in the framework of kinetic theory. We consider the limit of gases whose relaxation time is extremely fast so that the gases contained on the left and right chambers of the piston are always in equilibrium (that is the molecules are uniformly distributed and their velocities obey the Maxwell-Boltzmann distribution) after any collision with the piston. Then by using kinetic theory we derive the collision statistics from which we obtain a set of ordinary differential equations for the evolution of the macroscopic observables (namely the piston average velocity and position, the velocity variance and the temperatures of the two compartments). The dynamics of these equations is compared with simulations of an ideal gas and a microscopic model of gas settled to verify the assumptions used in the derivation. We show that the equations predict an evolution for the macroscopic variables which catches the basic features of the problem. The results here presented recover those derived, using a different approach, by Gruber, Pache and Lesne in J. Stat. Phys. 108, 669 (2002) and 112, 1177 (2003).
The adiabatic piston problem is solved at the mesoscale using a Kinetic Theory approach. The problem is to determine the evolution towards equilibrium of two gases separated by a wall with only one degree of freedom (the adiabatic piston). A closed s
The motion of an adiabatic piston under dry friction is investigated to clarify the roles of dry friction in non-equilibrium steady states. We clarify that dry friction can reverse the direction of the piston motion and causes a discontinuity or a cu
The correspondence principle suggests that quantum systems grow classical when large. Classical systems cannot violate Bell inequalities. Yet agents given substantial control can violate Bell inequalities proven for large-scale systems. We consider a
We study the adiabatic response of open systems governed by Lindblad evolutions. In such systems, there is an ambiguity in the assignment of observables to fluxes (rates) such as velocities and currents. For the appropriate notion of flux, the formul
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g. in quantum annealing and in studies of topological properties of matter. In this setup, the rate of