ﻻ يوجد ملخص باللغة العربية
Open quantum systems with chiral interactions can be realized by coupling atoms to guided radiation modes in waveguides or optical fibres. In their steady state these systems can feature intricate many-body phases such as entangled dark states, but their detection and characterization remains a challenge. Here we show how such collective phenomena can be uncovered through monitoring the record of photons emitted into the guided modes. This permits the identification of dark entangled states but furthermore offers novel capabilities for probing complex dynamical behavior, such as the coexistence of a dark entangled and a mixed phase. Our results are of direct relevance for current experiments, as they provide a framework for probing, characterizing and classifying dynamical features of chiral light-matter systems.
A recent experiment in the Rydberg atom chain observed unusual oscillatory quench dynamics with a charge density wave initial state, and theoretical works identified a set of many-body scar states showing nonthermal behavior in the Hamiltonian as pot
We study weak ergodicity breaking in a one-dimensional, nonintegrable spin-1 XY model. We construct for it an exact, highly excited eigenstate, which despite its large energy density, can be represented analytically by a finite bond-dimension matrix
We provide evidence that a clean kicked Bose-Hubbard model exhibits a many-body dynamically localized phase. This phase shows ergodicity breaking up to the largest sizes we were able to consider. We argue that this property persists in the limit of l
We find exponentially many exact quantum many-body scar states in a two-dimensional PXP model -- an effective model for a two-dimensional Rydberg atom array in the nearest-neighbor blockade regime. Such scar states are remarkably simple valence bond
A quantum simulator is a restricted class of quantum computer that controls the interactions between quantum bits in a way that can be mapped to certain difficult quantum many-body problems. As more control is exerted over larger numbers of qubits, t