ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum many-body scars from virtual entangled pairs

100   0   0.0 ( 0 )
 نشر من قبل Wen Wei Ho
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study weak ergodicity breaking in a one-dimensional, nonintegrable spin-1 XY model. We construct for it an exact, highly excited eigenstate, which despite its large energy density, can be represented analytically by a finite bond-dimension matrix product state (MPS) with area-law entanglement. Upon a quench to a finite Zeeman field, the state undergoes periodic dynamics with perfect many-body revivals, in stark contrast to other generic initial states which instead rapidly thermalize. This dynamics can be completely understood in terms of the evolution of entangled virtual spin-1/2 degrees of freedom, which in turn underpin the presence of an extensive tower of strong-eigenstate thermalization hypothesis (ETH)-violating many-body eigenstates. The resulting quantum many-body scars are therefore of novel origin. Our results provide important analytical insights into the nature and entanglement structure of quantum many-body scars.



قيم البحث

اقرأ أيضاً

151 - Zhiyuan Yao , Lei Pan , Shang Liu 2021
In this letter, we study the PXP Hamiltonian with an external magnetic field that exhibits both quantum scar states and quantum criticality. It is known that this model hosts a series of quantum many-body scar states violating quantum thermalization at zero magnetic field, and it also exhibits an Ising quantum phase transition driven by finite magnetic field. Although the former involves the properties of generic excited states and the latter concerns the low-energy physics, we discover two surprising connections between them, inspired by the observation that both states possess log-volume law entanglement entropies. First, we show that the quantum many-body scar states can be tracked to a set of quantum critical states, whose nature can be understood as pair-wisely occupied Fermi sea states. Second, we show that the partial violation of quantum thermalization diminishes in the quantum critical regime. We envision that these connections can be extended to general situations and readily verified in existing cold atom experimental platforms.
Certain wave functions of non-interacting quantum chaotic systems can exhibit scars in the fabric of their real-space density profile. Quantum scarred wave functions concentrate in the vicinity of unstable periodic classical trajectories. We introduc e the notion of many-body quantum scars which reflect the existence of a subset of special many-body eigenstates concentrated in certain parts of the Hilbert space. We demonstrate the existence of scars in the Fibonacci chain -- the one- dimensional model with a constrained local Hilbert space realized in the 51 Rydberg atom quantum simulator [H. Bernien et al., arXiv:1707.04344]. The quantum scarred eigenstates are embedded throughout the thermalizing many-body spectrum, but surprisingly lead to direct experimental signatures such as robust oscillations following a quench from a charge-density wave state found in experiment. We develop a model based on a single particle hopping on the Hilbert space graph, which quantitatively captures the scarred wave functions up to large systems of L = 32 atoms. Our results suggest that scarred many-body bands give rise to a new universality class of quantum dynamics, which opens up opportunities for creating and manipulating novel states with long-lived coherence in systems that are now amenable to experimental study.
Quantum chaos in many-body systems provides a bridge between statistical and quantum physics with strong predictive power. This framework is valuable for analyzing properties of complex quantum systems such as energy spectra and the dynamics of therm alization. While contemporary methods in quantum chaos often rely on random ensembles of quantum states and Hamiltonians, this is not reflective of most real-world systems. In this paper, we introduce a new perspective: across a wide range of examples, a single non-random quantum state is shown to encode universal and highly random quantum state ensembles. We characterize these ensembles using the notion of quantum state $k$-designs from quantum information theory and investigate their universality using a combination of analytic and numerical techniques. In particular, we establish that $k$-designs arise naturally from generic states as well as individual states associated with strongly interacting, time-independent Hamiltonian dynamics. Our results offer a new approach for studying quantum chaos and provide a practical method for sampling approximately uniformly random states; the latter has wide-ranging applications in quantum information science from tomography to benchmarking.
Recent discovery of persistent revivals in quantum simulators based on Rydberg atoms have pointed to the existence of a new type of dynamical behavior that challenged the conventional paradigms of integrability and thermalization. This novel collecti ve effect has been named quantum many-body scars by analogy with weak ergodicity breaking of a single particle inside a stadium billiard. In this overview, we provide a pedagogical introduction to quantum many-body scars and highlight the newly emerged connections with the semiclassical quantization of many-body systems. We discuss the relation between scars and more general routes towards weak violations of ergodicity due to embedded algebras and non-thermal eigenstates, and highlight possible applications of scars in quantum technology.
The collective and quantum behavior of many-body systems may be harnessed to achieve fast charging of energy storage devices, which have been recently dubbed quantum batteries. In this paper, we present an extensive numerical analysis of energy flow in a quantum battery described by a disordered quantum Ising chain Hamiltonian, whose equilibrium phase diagram presents many-body localized (MBL), Anderson localized (AL), and ergodic phases. We demonstrate that i) the low amount of entanglement of the MBL phase guarantees much better work extraction capabilities than the ergodic phase and ii) interactions suppress temporal energy fluctuations in comparison with those of the non-interacting AL phase. Finally, we show that the statistical distribution of values of the optimal charging time is a clear-cut diagnostic tool of the MBL phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا