ﻻ يوجد ملخص باللغة العربية
The most extreme deformations that can be explored in heavy-ion collisions at Fermi-energies are collimated flows of nuclear matter which recall jet dynamics. From microphysics to the cosmological scale, jets are rather common topologies. In nuclear physics, pioneering works focused on the breakup of these structures, resulting into early nuclear-fission models in analogy to the droplet formation in viscous liquids; such view became emblematic to explain surface-energy effects and surface instability by analogy with the Rayleigh instability. Through a dynamical approach based on the Boltzmann-Langevin equation, well adapted to out-of-equilibrium conditions, we explored the possibility that nuclear jets could arise in heavy-ion collisions from different conditions than those leading to fission or neck fragmentation, and that they can breakup from mechanisms that are almost unrelated to cohesive properties.
Head-on collisions between nuclei of different size at Fermi energies may give rise to extremely deformed dynamical regimes and patterns. Those latter, may suddenly turn into a stream of nuclear clusters, resembling collimated jets. Because the under
Modeling of the process of the formation of nuclear clusters in the hot nuclear matter is a challenging task. We present the novel n-body dynamical transport approach - PHQMD (Parton-Hadron-Quantum-Molecular Dynamics) [1] for the description of heavy
The Quark-Gluon Plasma (QGP) is created in high energy heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). This medium is transparent to electromagnetic probes but nearly opaque to colored probes. H
The probability of a projectile nucleon to traverse a target nucleus without interaction is calculated for central Si-Pb collisions and compared to the data of E814. The calculations are performed in two independent ways, via Glauber theory and using
In high energy nuclear collisions, heavy flavor tagged jets are useful hard probes to study the properties of the quark-gluon plasma (QGP). In this talk, we present the first theoretical prediction of the $D^0$ meson radial distributions in jets rela