ﻻ يوجد ملخص باللغة العربية
Quantum emitters coupled to plasmonic nanoantennas produce single photons at unprecedentedly high rates in ambient conditions. This enhancement of quantum emitters radiation rate is based on the existence of optical modes with highly sub-diffraction volumes supported by plasmonic gap nanoantennas. Nanoantennas with gap sizes on the order of few nanometers have been typically produced using various self-assembly or random assembly techniques. Yet, the difficulty of controllably fabricate nanoantennas with the smallest mode sizes coupled to pre-characterized single emitters until now has remained a serious issue plaguing the development of quantum plasmonic devices. We demonstrate the transfer of nanodiamonds with single nitrogen-vacancy (NV) centers to an epitaxial silver substrate and their subsequent deterministic coupling to plasmonic gap nanoantennas. Through fine control of the assembled nanoantenna geometry, a dramatic shortening of the NV fluorescence lifetime was achieved. We furthermore show that by preselecting NV centers exhibiting a photostable spin contrast, a coherent spin dynamics can be measured in the coupled configuration. The demonstrated approach opens unique applications of plasmon-enhanced quantum emitters for integrated quantum information and sensing devices.
We demonstrate the super-resolution localization of the nitrogen vacancy centers in diamond by a novel fluorescence photoswitching technique based on coherent quantum control. The photoswitching is realized by the quantum phase encoding based on puls
We describe and experimentally demonstrate a technique for deterministic coupling between a photonic crystal (PC) nanocavity and single emitters. The technique is based on in-situ scanning of a PC cavity over a sample and allows the positioning of th
We propose an experiment to generate deterministic entanglement between separate nitrogen vacancy (NV) centers mediated by the mode of a photonic crystal cavity. Using numerical simulations the applicability and robustness of the entanglement operati
We characterize single nitrogen-vacancy (NV) centers created by 10-keV N+ ion implantation into diamond via thin SiO$_2$ layers working as screening masks. Despite the relatively high acceleration energy compared with standard ones (< 5 keV) used to
Using a high quality factor 3 GHz bulk acoustic wave resonator device, we demonstrate the acoustically driven single quantum spin transition ($left|m_{s}=0right>leftrightarrowleft|pm1right>$) for diamond NV centers and characterize the corresponding