ترغب بنشر مسار تعليمي؟ اضغط هنا

Acoustically driving the single quantum spin transition of diamond nitrogen-vacancy centers

276   0   0.0 ( 0 )
 نشر من قبل Gregory Fuchs
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a high quality factor 3 GHz bulk acoustic wave resonator device, we demonstrate the acoustically driven single quantum spin transition ($left|m_{s}=0right>leftrightarrowleft|pm1right>$) for diamond NV centers and characterize the corresponding stress susceptibility. A key challenge is to disentangle the unintentional magnetic driving field generated by device current from the intentional stress driving within the device. We quantify these driving fields independently using Rabi spectroscopy before studying the more complicated case in which both are resonant with the single quantum spin transition. By building an equivalent circuit model to describe the devices current and mechanical dynamics, we quantitatively model the experiment to establish their relative contributions and compare with our results. We find that the stress susceptibility of the NV center spin single quantum transition is around $sqrt{2}(0.5pm0.2)$ times that for double quantum transition ($left|+1right>leftrightarrowleft|-1right>$). Although acoustic driving in the double quantum basis is valuable for quantum-enhanced sensing applications, double quantum driving lacks the ability to manipulate NV center spins out of the $left|m_{s}=0right>$ initialization state. Our results demonstrate that efficient all-acoustic quantum control over NV centers is possible, and is especially promising for sensing applications that benefit from the compact footprint and location selectivity of acoustic devices.



قيم البحث

اقرأ أيضاً

We demonstrate quantum interference between indistinguishable photons emitted by two nitrogen-vacancy (NV) centers in distinct diamond samples separated by two meters. Macroscopic solid immersion lenses are used to enhance photon collection efficienc y. Quantum interference is verified by measuring a value of the second-order cross-correlation function $g^{(2)}(0) = 0.35 pm 0.04<0.5$. In addition, optical transition frequencies of two separated NV centers are tuned into resonance with each other by applying external electric fields. Extension of the present approach to generate entanglement of remote solid-state qubits is discussed.
The neutral charge state plays an important role in quantum information and sensing applications based on nitrogen-vacancy centers. However, the orbital and spin dynamics remain unexplored. Here, we use resonant excitation of single centers to direct ly reveal the fine structure, enabling selective addressing of spin-orbit states. Through pump-probe experiments, we find the orbital relaxation time (430ns at 4.7K) and measure its temperature-dependence up to 11.8K. Finally we reveal the spin relaxation time (1.5s), and realize projective high-fidelity single-shot readout of the spin state ($geq98%$).
We report electrical tuning by the Stark effect of the excited-state structure of single nitrogen-vacancy (NV) centers located less than ~100 nm from the diamond surface. The zero-phonon line (ZPL) emission frequency is controllably varied over a ran ge of 300 GHz. Using high-resolution emission spectroscopy, we observe electrical tuning of the strengths of both cycling and spin-altering transitions. Under resonant excitation, we apply dynamic feedback to stabilize the ZPL frequency. The transition is locked over several minutes and drifts of the peak position on timescales greater than ~100 ms are reduced to a fraction of the single-scan linewidth, with standard deviation as low as 16 MHz (obtained for an NV in bulk, ultra-pure diamond). These techniques should improve the entanglement success probability in quantum communications protocols.
218 - A. Jarmola , A. Berzins , J. Smits 2015
We present systematic measurements of longitudinal relaxation rates ($1/T_1$) of spin polarization in the ground state of the nitrogen-vacancy (NV$^-$) color center in synthetic diamond as a function of NV$^-$ concentration and magnetic field $B$. NV $^-$ centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV$^-$ center concentrations. Values of ($1/T_1$) were measured for each spot as a function of $B$.
Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processin g, communication, and control. Specifically, significant progress has been made in the field of hybrid mechanical devices, in which a qubit is coupled to a mechanical oscillator. Strong coupling in such devices has been demonstrated with superconducting qubits, and coupling defect qubits to mechanical elements via crystal strain has enabled novel methods of qubit measurement and control. In this paper we demonstrate the fabrication of diamond optomechanical crystals with embedded nitrogen-vacancy (NV) centers, a preliminary step toward reaching the quantum regime with defect qubit hybrid mechanical devices. We measure optical and mechanical resonances of diamond optomechanical crystals as well as the spin coherence of single embedded NV centers. We find that the spin has long coherence times $T_2^* = 1.5 mu s$ and $T_2 = 72 mu s$ despite its proximity to nanofabricated surfaces. Finally, we discuss potential improvements of these devices and prospects for future experiments in the quantum regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا