ﻻ يوجد ملخص باللغة العربية
We use a novel cluster identification tool StarGO to explore the metal poor ([Fe/H] $<$ -1.5) outer stellar halo (d $>$ 15 kpc) of the Milky Way using data from Gaia, LAMOST and SDSS. Our method is built using an unsupervised learning algorithm, a self-organizing map, which trains a 2-D neural network to learn the topological structures of a data set from an n-D input space. Using a 4-D space of angular momentum and orbital energy, we identify three distinct groups corresponding to the Sagittarius, Orphan, and Cetus Streams. For the first time we are able to discover a northern counterpart to the Cetus stream. We test the robustness of this new detection using mock data and find that the significance is more than 5-sigma. We also find that the existing southern counterpart bifurcates into two clumps with different radial velocities. By exploiting the visualization power of StarGO, we attach MW globular clusters to the same trained neural network. The Sagittarius stream is found to have five related clusters, confirming recent literature studies, and the Cetus stream has one associated cluster, NGC 5824. This latter association has previously been postulated, but can only now be truly confirmed thanks to the high-precision Gaia proper motions and large numbers of stellar spectra from LAMOST. The large metallicity dispersion of the stream indicates that the progenitor cannot be a globular cluster. Given the mean metallicity of the stream, we propose that the stream is the result of a merger of a low-mass dwarf galaxy that hosted a large nuclear star cluster (NGC 5824).
A large number of new members ($sim$150) of the Cetus Stream (CS) were identified from their clustering features in dynamical space using 6D kinematic data by combining LAMOST DR5 and Gaia DR2 surveys. They map a diffuse structure that extends over a
The Magellanic Stream, a gaseous tail that trails behind the Magellanic Clouds, could replenish the Milky Way with a tremendous amount of gas if it reaches the Galactic disk before it evaporates into the halo. To determine how the Magellanic Streams
In order to minimize environmental effects and gain an insight into the internal mechanisms that shape the properties of the early-type dwarf systems, we study one of the few isolated dwarf spheroidal galaxies (dSphs) of the Local Group (LG): Cetus.
Stellar shells around galaxies could provide precious insights into their assembly history. However, their formation mechanism remains poorly empirically constrained, in particular the type of galaxy collisions at their origin. We present MUSE@VLT da
We present MUSE observations in the core of the HFF galaxy cluster MACS J1149.5+2223, where the first magnified and spatially-resolved multiple images of SN Refsdal at redshift 1.489 were detected. Thanks to a DDT program with the VLT and the extraor