ترغب بنشر مسار تعليمي؟ اضغط هنا

The story of supernova Refsdal told by MUSE

75   0   0.0 ( 0 )
 نشر من قبل Claudio Grillo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present MUSE observations in the core of the HFF galaxy cluster MACS J1149.5+2223, where the first magnified and spatially-resolved multiple images of SN Refsdal at redshift 1.489 were detected. Thanks to a DDT program with the VLT and the extraordinary efficiency of MUSE, we measure 117 secure redshifts with just 4.8 hours of total integration time on a single target pointing. We spectroscopically confirm 68 galaxy cluster members, with redshift values ranging from 0.5272 to 0.5660, and 18 multiple images belonging to 7 background, lensed sources distributed in redshifts between 1.240 and 3.703. Starting from the combination of our catalog with those obtained from extensive spectroscopic and photometric campaigns using the HST, we select a sample of 300 (164 spectroscopic and 136 photometric) cluster members, within approximately 500 kpc from the BCG, and a set of 88 reliable multiple images associated to 10 different background source galaxies and 18 distinct knots in the spiral galaxy hosting SN Refsdal. We exploit this valuable information to build 6 detailed strong lensing models, the best of which reproduces the observed positions of the multiple images with a rms offset of only 0.26. We use these models to quantify the statistical and systematic errors on the predicted values of magnification and time delay of the next emerging image of SN Refsdal. We find that its peak luminosity should should occur between March and June 2016, and should be approximately 20% fainter than the dimmest (S4) of the previously detected images but above the detection limit of the planned HST/WFC3 follow-up. We present our two-dimensional reconstruction of the cluster mass density distribution and of the SN Refsdal host galaxy surface brightness distribution. We outline the roadmap towards even better strong lensing models with a synergetic MUSE and HST effort.



قيم البحث

اقرأ أيضاً

159 - M. Jauzac 2015
We present a high-precision mass model of the galaxy cluster MACSJ1149.6+2223, based on a strong-gravitational-lensing analysis of Hubble Space Telescope Frontier Fields (HFF) imaging data and spectroscopic follow-up with Gemini/GMOS and VLT/MUSE. Ou r model includes 12 new multiply imaged galaxies, bringing the total to 22, comprised of 65 individual lensed images. Unlike the first two HFF clusters, Abell 2744 and MACSJ0416.1-2403, MACSJ1149 does not reveal as many multiple images in the HFF data. Using the Lenstool software package and the new sets of multiple images, we model the cluster with several cluster-scale dark-matter halos and additional galaxy-scale halos for the cluster members. Consistent with previous analyses, we find the system to be complex, composed of five cluster-scale halos. Their spatial distribution and lower mass, however, makes MACSJ1149 a less powerful lens. Our best-fit model predicts image positions with an RMS of 0.91. We measure the total projected mass inside a 200~kpc aperture as ($1.840pm 0.006$)$times 10^{14}$M$_{odot}$, thus reaching again 1% precision, following our previous HFF analyses of MACSJ0416.1-2403 and Abell 2744. In light of the discovery of the first resolved quadruply lensed supernova, SN Refsdal, in one of the multiply imaged galaxies identified in MACSJ1149, we use our revised mass model to investigate the time delays and predict the rise of the next image between November 2015 and January 2016.
182 - T.-T. Yuan 2015
We present the local HII region metallicity near the site of the recently discovered multiply lensed supernova (SN; SN Refsdal) at redshift 1.49. SN Refsdal is located at the outer spiral arm ($sim$7 kpc) of the lensed host galaxy, which we have prev iously reported to exhibit a steep negative galactocentric metallicity gradient. Based on our updated near-infrared integral field spectroscopic data, the gas-phase metallicity averaged in an intrinsic radius of $sim$ 550 pc surrounding an HII region $sim$ 200 pc away from the SN site is 12 + log(O/H)$_{rm PP04N2}$ $le$ 8.67. The metallicity averaged over nine HII regions at similar galactocentric distances ($sim$5-7 kpc) as SN Refsdal is constrained to be 12 + log(O/H)$_{rm PP04N2}$ $le$ 8.11. Given the fortuitous discovery of SN Refsdal in an advantageously lensed face-on spiral, this is the first observational constraint on the local metallicity environment of an SN site at redshift $z>1$.
We have acquired Hubble Space Telescope (HST) and Very Large Telescope near-infrared spectra and images of supernova (SN) Refsdal after its discovery as an Einstein cross in Fall 2014. The HST light curve of SN Refsdal matches the distinctive, slowly rising light curves of SN 1987A-like supernovae (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show broad and strong H-alpha absorption. From the grism spectrum, we measure an H-alpha expansion velocity consistent with those of SN 1987A-like SNe at a similar phase. The luminosity, evolution, and Gaussian profile of the H-alpha emission of the WFC3 and X-shooter spectra, separated by ~2.5 months in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, SN Refsdal has a blue B-V color and a high luminosity for the assumed range of potential magnifications. If SN Refsdal can be modeled as a scaled version of SN 1987A, we estimate it would have an ejecta mass of 20+-5 solar masses. The evolution of the light curve at late times will provide additional evidence about the potential existence of any substantial circumstellar material (CSM). Using MOSFIRE and X-shooter spectra, we estimate a subsolar host-galaxy metallicity (8.3+-0.1 dex and <8.4 dex, respectively) near the explosion site.
We use data from the Multi-Unit Spectroscopic Explorer (MUSE), recently commissioned at the Very Large Telescope (VLT), to study the kinematics and stellar population content of NGC 4371, an early-type massive barred galaxy in the core of the Virgo c luster. We integrate this study with a detailed structural analysis using imaging data from the Hubble and Spitzer space telescopes, which allows us to perform a thorough investigation of the physical properties of the galaxy. We show that the rotationally supported inner components in NGC 4371, an inner disc and a nuclear ring - which, according to the predominant scenario, are built with stars formed from gas brought to the inner region by the bar - are vastly dominated by stars older than 10 Gyr. Our results thus indicate that the formation of the bar occurred at a redshift of about $z=1.8^{+0.5}_{-0.4}$ (error bars are derived from 100 Monte Carlo realisations). NGC 4371 thus testifies to the robustness of bars. In addition, the mean stellar age of the fraction of the major disc of the galaxy covered by our MUSE data is above 7 Gyr, with a small contribution from younger stars. This suggests that the quenching of star formation in NGC 4371, likely due to environmental effects, was already effective at a redshift of about $z=0.8^{+0.2}_{-0.1}$. Our results point out that bar-driven secular evolution processes may have an extended impact in the evolution of galaxies, and thus on the properties of galaxies as observed today, not necessarily restricted to more recent cosmic epochs.
In Hubble Space Telescope (HST) imaging taken on 10 November 2014, four images of supernova (SN) Refsdal (redshift z=1.49) appeared in an Einstein-cross--like configuration (images S1-S4) around an early-type galaxy in the cluster MACS J1149.5+2223 ( z=0.54). Almost all lens models of the cluster have predicted that the SN should reappear within a year in a second host-galaxy image created by the clusters potential. In HST observations taken on 11 December 2015, we find a new source at the predicted position of the new image of SN Refsdal approximately 8 from the previous images S1-S4. This marks the first time the appearance of a SN at a particular time and location in the sky was successfully predicted in advance! We use these data and the light curve from the first four observed images of SN Refsdal to place constraints on the relative time delay and magnification of the new image (SX), compared to images S1-S4. This enables us, for the first time, to test blind lens model predictions of both magnifications and time delays for a lensed SN. We find that the timing and brightness of the new image are consistent with the blind predictions of a fraction of the models. The reappearance illustrates the discriminatory power of this blind test and its utility to uncover sources of systematic uncertainty. From planned HST photometry, we expect to reach a precision of 1-2% on the time delay between S1-S4 and SX.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا