ﻻ يوجد ملخص باللغة العربية
Weyl semimetals are crystals in which electron bands cross at isolated points in momentum space. Associated with each crossing point (or Weyl node) is an integer topological invariant known as the Berry monopole charge. The discovery of new classes of Weyl materials is driving the search for novel properties that derive directly from the Berry charge. The circular photogalvanic effect (CPGE), whereby circular polarized light generates a current whose direction depends on the helicity of the absorbed photons, is a striking example of a macroscopic property that emerges from Weyl topology. Recently, it was predicted that the rate of current generation associated with optical transitions near a Weyl node is proportional to its monopole charge and independent of material-specific parameters. In Weyl semimetals that retain mirror symmetry this universal photogalvanic current is strongly suppressed by opposing contributions from energy equivalent nodes of opposite charge. However, when all mirror symmetries are broken, as in chiral Weyl systems, nodes with opposite topological charge are no longer degenerate, opening a window of photon energies where the topological CPGE can emerge. In this work we test this theory through measurement of the photon-energy dependence of the CPGE in the chiral Weyl semimetal RhSi. The spectrum is fully consistent with a topological CPGE, as it reveals a response in a low-energy window that closes at 0.65 eV, in quantitative agreement with the theoretically-derived bandstucture.
We report the experimental discovery of Adler-Bell-Jackiw chiral anomaly in a Weyl semimetal crystal.
Solids with topologically robust electronic states exhibit unusual electronic and optical transport properties that do not exist in other materials. A particularly interesting example is chiral charge pumping, the so-called chiral anomaly, in recentl
Recently, Weyl semimetals have been experimentally discovered in both inversion-symmetry-breaking and time-reversal-symmetry-breaking crystals. The non-trivial topology in Weyl semimetals can manifest itself with exotic phenomena which have been exte
Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fer
We present results of a theoretical study of photocurrents in the Weyl semimetals belonging to the gyrotropic symmetry classes. We show that, in weakly gyrotropic symmetry classes C$_{nv}$ ($n = 3,4,6$), the circular photocurrent transverse to the in