ﻻ يوجد ملخص باللغة العربية
Recently, Weyl semimetals have been experimentally discovered in both inversion-symmetry-breaking and time-reversal-symmetry-breaking crystals. The non-trivial topology in Weyl semimetals can manifest itself with exotic phenomena which have been extensively investigated by photoemission and transport measurements. Despite the numerous experimental efforts on Fermi arcs and chiral anomaly, the existence of unconventional zeroth Landau levels, as a unique hallmark of Weyl fermions which is highly related to chiral anomaly, remains elusive owing to the stringent experimental requirements. Here, we report the magneto-optical study of Landau quantization in Weyl semimetal NbAs. High magnetic fields drive the system towards the quantum limit which leads to the observation of zeroth chiral Landau levels in two inequivalent Weyl nodes. As compared to other Landau levels, the zeroth chiral Landau level exhibits a distinct linear dispersion in z momentum direction and allows the optical transitions without the limitation of zero z momentum or square root of magnetic field evolution. The magnetic field dependence of the zeroth Landau levels further verifies the predicted particle-hole asymmetry of the Weyl cones. Meanwhile, the optical transitions from the normal Landau levels exhibit the coexistence of multiple carriers including an unexpected massive Dirac fermion, pointing to a more complex topological nature in inversion-symmetry-breaking Weyl semimetals. Our results provide insights into the Landau quantization of Weyl fermions and demonstrate an effective tool for studying complex topological systems.
Motivated by recent transport experiments, we theoretically study the quantum Hall effect in topological semimetal films. Owing to the confinement effect, the bulk subbands originating from the chiral Landau levels establish energy gaps that have qua
We report the effect of hydrostatic pressure on the magnetotransport properties of the Weyl semimetal NbAs. Subtle changes can be seen in the $rho_{xx}(T)$ profiles with pressure up to 2.31 GPa. The Fermi surfaces undergo an anisotropic evolution und
We report the discovery of Weyl semimetal NbAs featuring topological Fermi arc surface states.
The intense search for topological superconductivity is inspired by the prospect that it hosts Majorana quasiparticles. We explore in this work the optimal design for producing topological superconductivity by combining a quantum Hall state with an o
Weyl semimetals are crystals in which electron bands cross at isolated points in momentum space. Associated with each crossing point (or Weyl node) is an integer topological invariant known as the Berry monopole charge. The discovery of new classes o