ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement-assisted communication of classical and quantum information

226   0   0.0 ( 0 )
 نشر من قبل Mark Wilde
 تاريخ النشر 2010
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of transmitting classical and quantum information reliably over an entanglement-assisted quantum channel. Our main result is a capacity theorem that gives a three-dimensional achievable rate region. Points in the region are rate triples, consisting of the classical communication rate, the quantum communication rate, and the entanglement consumption rate of a particular coding scheme. The crucial protocol in achieving the boundary points of the capacity region is a protocol that we name the classically-enhanced father protocol. The classically-enhanced father protocol is more general than other protocols in the family tree of quantum Shannon theoretic protocols, in the sense that several previously known quantum protocols are now child protocols of it. The classically-enhanced father protocol also shows an improvement over a time-sharing strategy for the case of a qubit dephasing channel--this result justifies the need for simultaneous coding of classical and quantum information over an entanglement-assisted quantum channel. Our capacity theorem is of a multi-letter nature (requiring a limit over many uses of the channel), but it reduces to a single-letter characterization for at least three channels: the completely depolarizing channel, the quantum erasure channel, and the qubit dephasing channel.



قيم البحث

اقرأ أيضاً

Given one or more uses of a classical channel, only a certain number of messages can be transmitted with zero probability of error. The study of this number and its asymptotic behaviour constitutes the field of classical zero-error information theory , the quantum generalisation of which has started to develop recently. We show that, given a single use of certain classical channels, entangled states of a system shared by the sender and receiver can be used to increase the number of (classical) messages which can be sent with no chance of error. In particular, we show how to construct such a channel based on any proof of the Bell-Kochen-Specker theorem. This is a new example of the use of quantum effects to improve the performance of a classical task. We investigate the connection between this phenomenon and that of ``pseudo-telepathy games. The use of generalised non-signalling correlations to assist in this task is also considered. In this case, a particularly elegant theory results and, remarkably, it is sometimes possible to transmit information with zero-error using a channel with no unassisted zero-error capacity.
We show how to protect a stream of quantum information from decoherence induced by a noisy quantum communication channel. We exploit preshared entanglement and a convolutional coding structure to develop a theory of entanglement-assisted quantum conv olutional coding. Our construction produces a Calderbank-Shor-Steane (CSS) entanglement-assisted quantum convolutional code from two arbitrary classical binary convolutional codes. The rate and error-correcting properties of the classical convolutional codes directly determine the corresponding properties of the resulting entanglement-assisted quantum convolutional code. We explain how to encode our CSS entanglement-assisted quantum convolutional codes starting from a stream of information qubits, ancilla qubits, and shared entangled bits.
We prove that the classical capacity of an arbitrary quantum channel assisted by a free classical feedback channel is bounded from above by the maximum average output entropy of the quantum channel. As a consequence of this bound, we conclude that a classical feedback channel does not improve the classical capacity of a quantum erasure channel, and by taking into account energy constraints, we conclude the same for a pure-loss bosonic channel. The method for establishing the aforementioned entropy bound involves identifying an information measure having two key properties: 1) it does not increase under a one-way local operations and classical communication channel from the receiver to the sender and 2) a quantum channel from sender to receiver cannot increase the information measure by more than the maximum output entropy of the channel. This information measure can be understood as the sum of two terms, with one corresponding to classical correlation and the other to entanglement.
We solve the entanglement-assisted (EA) classical capacity region of quantum multiple-access channels with an arbitrary number of senders. As an example, we consider the bosonic thermal-loss multiple-access channel and solve the one-shot capacity reg ion enabled by an entanglement source composed of sender-receiver pairwise two-mode squeezed vacuum states. The EA capacity region is strictly larger than the capacity region without entanglement-assistance. With two-mode squeezed vacuum states as the source and phase modulation as the encoding, we also design practical receiver protocols to realize the entanglement advantages. Four practical receiver designs, based on optical parametric amplifiers, are given and analyzed. In the parameter region of a large noise background, the receivers can enable a simultaneous rate advantage of 82.0% for each sender. Due to teleportation and superdense coding, our results for EA classical communication can be directly extended to EA quantum communication at half of the rates. Our work provides a unique and practical network communication scenario where entanglement can be beneficial.
We provide the first inner bounds for sending private classical information over a quantum multiple access channel. We do so by using three powerful information theoretic techniques: rate splitting, quantum simultaneous decoding for multiple access c hannels, and a novel smoothed distributed covering lemma for classical quantum channels. Our inner bounds are given in the one shot setting and accordingly the three techniques used are all very recent ones specifically designed to work in this setting. The last technique is new to this work and is our main technical advancement. For the asymptotic iid setting, our one shot inner bounds lead to the natural quantum analogue of the best classical inner bounds for this problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا