ﻻ يوجد ملخص باللغة العربية
Using the recently published GJF-2GJ Langevin thermostat, which can produce time-step-independent statistical measures even for large time steps, we analyze and discuss the causes for abrupt deviations in statistical data as the time step is increased for some simulations of nonlinear oscillators. Exemplified by the pendulum, we identify a couple of discrete-time dynamical modes in the purely damped pendulum equation as the cause of the observed discrepancies in statistics. The existence, stability and kinetics of the modes are consistent with the acquired velocity distribution functions from Langevin simulations, and we conclude that the simulation deviations from physical expectations are not due to normal, systematic algorithmic time-step errors, but instead due to the inherent properties of discrete time in nonlinear dynamics.
We present the complete set of stochastic Verlet-type algorithms that can provide correct statistical measures for both configurational and kinetic sampling in discrete-time Langevin systems. The approach is a brute-force general representation of th
We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are build on our previously developed stochastic thermost
Following the recent realisation that periodically driven quantum matter can support new types of spatiotemporal order, now known as discrete time crystals (DTCs), we consider the stability of this phenomenon. Motivated by its conceptual importance a
How much time does it take two molecules to react? If a reaction occurs upon contact, the answer to this question boils down to the classic first-passage time problem: find the random time it takes the two molecules to meet. However, this is not alwa
The emph{ab initio} path integral Monte Carlo (PIMC) approach is one of the most successful methods in quantum many-body theory. A particular strength of this method is its straightforward access to imaginary-time correlation functions (ITCF). For ex