ترغب بنشر مسار تعليمي؟ اضغط هنا

The fate of a discrete time crystal in an open system

79   0   0.0 ( 0 )
 نشر من قبل Achilleas Lazarides
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Following the recent realisation that periodically driven quantum matter can support new types of spatiotemporal order, now known as discrete time crystals (DTCs), we consider the stability of this phenomenon. Motivated by its conceptual importance as well as its experimental relevance we consider the effect of coupling to an external environment. We use this to argue, both analytically and numerically, that the DTC in disordered one-dimensional systems is destroyed at long times by any such natural coupling. This holds true even in the case where the coupling is such that the system is prevented from heating up by an external thermal bath.



قيم البحث

اقرأ أيضاً

The critical properties characterizing the formation of the Floquet time crystal in the prethermal phase are investigated analytically in the periodically driven $O(N)$ model. In particular, we focus on the critical line separating the trivial phase with period synchronized dynamics and absence of long-range spatial order from the non-trivial phase where long-range spatial order is accompanied by period-doubling dynamics. In the vicinity of the critical line, with a combination of dimensional expansion and exact solution for $Ntoinfty$, we determine the exponent $ u$ that characterizes the divergence of the spatial correlation length of the equal-time correlation functions, the exponent $beta$ characterizing the growth of the amplitude of the order-parameter, as well as the initial-slip exponent $theta$ of the aging dynamics when a quench is performed from deep in the trivial phase to the critical line. The exponents $ u, beta, theta$ are found to be identical to those in the absence of the drive. In addition, the functional form of the aging is found to depend on whether the system is probed at times that are small or large compared to the drive period. The spatial structure of the two-point correlation functions, obtained as a linear response to a perturbing potential in the vicinity of the critical line, is found to show algebraic decays that are longer ranged than in the absence of a drive, and besides being period-doubled, are also found to oscillate in space at the wave-vector $omega/(2 v)$, $v$ being the velocity of the quasiparticles, and $omega$ being the drive frequency.
We describe a possible general and simple paradigm in a classical thermal setting for discrete time crystals (DTCs), systems with stable dynamics which is subharmonic to the driving frequency thus breaking discrete time-translational invariance. We c onsider specifically an Ising model in two dimensions, as a prototypical system with a phase transition into stable phases distinguished by a local order parameter, driven by a thermal dynamics and periodically kicked. We show that for a wide parameter range a stable DTC emerges. The phase transition to the DTC state appears to be in the equilibrium 2D Ising class when dynamics is observed stroboscopically. However, we show that the DTC is a genuine non-equilibrium state. More generally, we speculate that systems with thermal phase transitions to multiple competing phases can give rise to DTCs when appropriately driven.
We establish a link between metastability and a discrete time-crystalline phase in a periodically driven open quantum system. The mechanism we highlight requires neither the system to display any microscopic symmetry nor the presence of disorder, but relies instead on the emergence of a metastable regime. We investigate this in detail in an open quantum spin system, which is a canonical model for the exploration of collective phenomena in strongly interacting dissipative Rydberg gases. Here, a semi-classical approach reveals the emergence of a robust discrete time-crystalline phase in the thermodynamic limit in which metastability, dissipation, and inter-particle interactions play a crucial role. We perform large-scale numerical simulations in order to investigate the dependence on the range of interactions, from all-to-all to short ranged, and the scaling with system size of the lifetime of the time crystal.
We study the temporal evolution of the mutual information (MI) in a one-dimensional Kitaev chain, coupled to a fermionic Markovian bath, subsequent to a global quench of the chemical potential. In the unitary case, the MI (or equivalently the biparti te entanglement entropy) saturates to a steady-state value (obeying a volume law) following a ballistic growth. On the contrary, we establish that in the dissipative case the MI is exponentially damped both during the initial ballistic growth as well as in the approach to the steady state. We observe that even in a dissipative system, postquench information propagates solely through entangled pairs of quasiparticles having a finite lifetime; this quasiparticle picture is further corroborated by the out-of-equilibrium analysis of two-point fermionic correlations. Remarkably, in spite of the finite lifetime of the quasiparticles, a finite steady-state value of the MI survives in asymptotic times which is an artifact of nonvanishing two-point correlations. Further, the finite lifetime of quasiparticles renders to a finite length scale in these steady-state correlations.
We numerically study the unitary time evolution of a nonintegrable model of hard-core bosons with an extensive number of local Z2 symmetries. We find that the expectation values of local observables in the stationary state are described better by the generalized Gibbs ensemble (GGE) than by the canonical ensemble. We also find that the eigenstate thermalization hypothesis fails for the entire spectrum, but holds true within each symmetry sector, which justifies the GGE. In contrast, if the model has only one global Z2 symmetry or a size-independent number of local Z2 symmetries, we find that the stationary state is described by the canonical ensemble. Thus, the GGE is necessary to describe the stationary state even in a nonintegrable system if it has an extensive number of local symmetries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا