ﻻ يوجد ملخص باللغة العربية
Following the recent realisation that periodically driven quantum matter can support new types of spatiotemporal order, now known as discrete time crystals (DTCs), we consider the stability of this phenomenon. Motivated by its conceptual importance as well as its experimental relevance we consider the effect of coupling to an external environment. We use this to argue, both analytically and numerically, that the DTC in disordered one-dimensional systems is destroyed at long times by any such natural coupling. This holds true even in the case where the coupling is such that the system is prevented from heating up by an external thermal bath.
The critical properties characterizing the formation of the Floquet time crystal in the prethermal phase are investigated analytically in the periodically driven $O(N)$ model. In particular, we focus on the critical line separating the trivial phase
We describe a possible general and simple paradigm in a classical thermal setting for discrete time crystals (DTCs), systems with stable dynamics which is subharmonic to the driving frequency thus breaking discrete time-translational invariance. We c
We establish a link between metastability and a discrete time-crystalline phase in a periodically driven open quantum system. The mechanism we highlight requires neither the system to display any microscopic symmetry nor the presence of disorder, but
We study the temporal evolution of the mutual information (MI) in a one-dimensional Kitaev chain, coupled to a fermionic Markovian bath, subsequent to a global quench of the chemical potential. In the unitary case, the MI (or equivalently the biparti
We numerically study the unitary time evolution of a nonintegrable model of hard-core bosons with an extensive number of local Z2 symmetries. We find that the expectation values of local observables in the stationary state are described better by the