ترغب بنشر مسار تعليمي؟ اضغط هنا

The effects of a revised $^7$Be e$^-$-capture rate on solar neutrino fluxes

93   0   0.0 ( 0 )
 نشر من قبل Diego Vescovi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electron-capture rate on $^7$Be is the main production channel for $^7$Li in several astrophysical environments. Theoretical evaluations have to account for not only the nuclear interaction, but also the processes in the plasma where $^7$Be ions and electrons interact. In the past decades several estimates were presented, pointing out that the theoretical uncertainty in the rate is in general of few percents. In the framework of fundamental solar physics, we consider here a recent evaluation for the $^7$Be+e$^-$ rate, not used up to now in the estimate of neutrino fluxes. We analysed the effects of the new assumptions on Standard Solar Models (SSMs) and compared the results obtained by adopting the revised $^7$Be+e$^-$ rate to those obtained by the one reported in a widely used compilation of reaction rates (ADE11). We found that new SSMs yield a maximum difference in the efficiency of the $^7$Be channel of about -4% with respect to what is obtained with the previously adopted rate. This fact affects the production of neutrinos from $^8$B, increasing the relative flux up to a maximum of 2.7%. Negligible variations are found for the physical and chemical properties of the computed solar models. The agreement with the SNO measurements of the neutral current component of the $^8$B neutrino flux is improved.



قيم البحث

اقرأ أيضاً

We detected the seasonal modulation of the $^7$Be neutrino interaction rate with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. The period, amplitude, and phase of the observed time evolution of the signal are consistent w ith its solar origin, and the absence of an annual modulation is rejected at 99.99% C.L. The data are analyzed using three methods: the sinusoidal fit, the Lomb-Scargle and the Empirical Mode Decomposition techniques, which all yield results in excellent agreement.
157 - S.Q. Hou , J.J. He , S. Kubono 2015
In the standard Big-Bang nucleosynthesis (BBN) model, the primordial $^7$Li abundance is overestimated by about a factor of 2--3 comparing to the astronomical observations, so called the pending cosmological lithium problem. The $^7$Be($n$,$alpha$)$^ 4$He reaction, which may affect the $^7$Li abundance, was regarded as the secondary important reaction in destructing the $^7$Be nucleus in BBN. However, the thermonuclear rate of $^7$Be($n$,$alpha$)$^4$He has not been well studied so far. This reaction rate was firstly estimated by Wagoner in 1969, which has been generally adopted in the current BBN simulations and the reaction rate library. This simple estimation involved only a direct-capture reaction mechanism, but the resonant contribution should be also considered according to the later experimental results. In this work, we have revised this rate based on the indirect cross-section data available for the $^4$He($alpha$,$n$)$^7$Be and $^4$He($alpha$,$p$)$^7$Li reactions, with the charge symmetry and detailed-balance principle. Our new result shows that the previous rate (acting as an upper limit) is overestimated by about a factor of ten. The BBN simulation shows that the present rate leads to a 1.2% increase in the final $^7$Li abundance compared to the result using the Wagoner rate, and hence the present rate even worsens the $^7$Li problem. By the present estimation, the role of $^7$Be($n$,$alpha$)$^4$He in destroying $^7$Be is weakened from the secondary importance to the third, and the $^7$Be($d$,$p$)2$^4$He reaction becomes of secondary importance in destructing $^7$Be.
Stardust grains recovered from meteorites provide high-precision snapshots of the isotopic composition of the stellar environment in which they formed. Attributing their origin to specific types of stars, however, often proves difficult. Intermediate -mass stars of 4-8 solar masses are expected to contribute a large fraction of meteoritic stardust. However, no grains have been found with characteristic isotopic compositions expected from such stars. This is a long-standing puzzle, which points to serious gaps in our understanding of the lifecycle of stars and dust in our Galaxy. Here we show that the increased proton-capture rate of $^{17}$O reported by a recent underground experiment leads to $^{17}$O/$^{16}$O isotopic ratios that match those observed in a population of stardust grains, for proton-burning temperatures of 60-80 million K. These temperatures are indeed achieved at the base of the convective envelope during the late evolution of intermediate-mass stars of 4-8 solar masses, which reveals them as the most likely site of origin of the grains. This result provides the first direct evidence that these stars contributed to the dust inventory from which the Solar System formed.
We describe a cooperative measurement of the capture rate of solar neutrinos by the reaction 71Ga( u_e,e^-)71Ge. Extractions were made from a portion of the gallium target in the Russian-American Gallium Experiment SAGE and the extraction samples wer e transported to the Gran Sasso laboratory for synthesis and counting at the Gallium Neutrino Observatory GNO. Six extractions of this type were made and the resultant solar neutrino capture rate was 64 ^{+24}_{-22} SNU, which agrees well with the overall result of the gallium experiments. The major purpose of this experiment was to make it possible for SAGE to continue their regular schedule of monthly solar neutrino extractions without interruption while a separate experiment was underway to measure the response of 71Ga to neutrinos from an 37Ar source. As side benefits, this experiment proved the feasibility of long-distance sample transport in ultralow background radiochemical experiments and familiarized each group with the methods and techniques of the other.
125 - Michael Wurm 2010
A next-generation liquid-scintillator detector will be able to perform high-statistics measurements of the solar neutrino flux. In LENA, solar Be-7 neutrinos are expected to cause 1.7x10^4 electron recoil events per day in a fiducial volume of 35 kil otons. Based on this signal, a search for periodic modulations on sub-percent level can be conducted, surpassing the sensitivity of current detectors by at least a factor of 20. The range of accessible periods reaches from several minutes, corresponding to modulations induced by helioseismic g-modes, to tens of years, allowing to study long-term changes in solar fusion rates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا