ﻻ يوجد ملخص باللغة العربية
The measurement of the neutron capture cross-section as a function of energy in the thermal range requires a precise knowledge of the absolute neutron flux. In this paper a new method of calibrating a thermal neutron beam using the controlled activation of sodium is described. The method is applied to the FP-14 Time Of Flight neutron beam line at the Los Alamos Neutron Science Center to calibrate the beam to a precision of $pm5$%.
Neutron beam monitors with high efficiency, low gamma sensitivity, high time and space resolution are required in neutron beam experiments to continuously diagnose the delivered beam. In this work, commercially available neutron beam monitors have be
Accurately measuring the neutron beam polarization of a high flux, large area neutron beam is necessary for many neutron physics experiments. The Fundamental Neutron Physics Beamline (FnPB) at the Spallation Neutron Source (SNS) is a pulsed neutron b
We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an $textit{in situ}$ measurement of t
The development of low-threshold detectors for the study of coherent elastic neutrino-nucleus scattering and for the search for light dark matter necessitates methods of low-energy calibration. We suggest this can be provided by the nuclear recoils r
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using a method of an alpha-gamma counter. The method involves only the counting of measured rates and is independent of neutro