ﻻ يوجد ملخص باللغة العربية
The development of low-threshold detectors for the study of coherent elastic neutrino-nucleus scattering and for the search for light dark matter necessitates methods of low-energy calibration. We suggest this can be provided by the nuclear recoils resulting from the $gamma$ emission following thermal neutron capture. In particular, several MeV-scale single-$gamma$ transitions induce well-defined nuclear recoil peaks in the 100 eV range. Using the FIFRELIN code, complete schemes of $gamma$-cascades for various isotopes can be predicted with high accuracy to determine the continuous background of nuclear recoils below the calibration peaks. We present a comprehensive experimental concept for the calibration of CaWO$_4$ and Ge cryogenic detectors at a research reactor. For CaWO$_4$ the simulations show that two nuclear recoil peaks at 112.5 eV and 160.3 eV should be visible above background simply in the spectrum of the cryogenic detector. Then we discuss how the additional tagging for the associated $gamma$ increases the sensitivity of the method and extends its application to a wider energy range and to Ge cryogenic detectors.
We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an $textit{in situ}$ measurement of t
DarkSide-50 has demonstrated the high potential of dual-phase liquid argon time projection chambers in exploring interactions of WIMPs in the GeV/c$^2$ mass range. The technique, based on the detection of the ionization signal amplified via electrolu
We report here methods and techniques for creating and improving a model that reproduces the scintillation and ionization response of a dual-phase liquid and gaseous xenon time-projection chamber. Starting with the recent release of the Noble Element
We present a comprehensive analysis of electronic recoil vs. nuclear recoil discrimination in liquid/gas xenon time projection chambers, using calibration data from the 2013 and 2014-16 runs of the Large Underground Xenon (LUX) experiment. We observe
We report an absolute calibration of the ionization yields($textit{Q$_y$})$ and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon tar