ترغب بنشر مسار تعليمي؟ اضغط هنا

Can SGD Learn Recurrent Neural Networks with Provable Generalization?

195   0   0.0 ( 0 )
 نشر من قبل Zeyuan Allen-Zhu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recurrent Neural Networks (RNNs) are among the most popular models in sequential data analysis. Yet, in the foundational PAC learning language, what concept class can it learn? Moreover, how can the same recurrent unit simultaneously learn functions from different input tokens to different output tokens, without affecting each other? Existing generalization bounds for RNN scale exponentially with the input length, significantly limiting their practical implications. In this paper, we show using the vanilla stochastic gradient descent (SGD), RNN can actually learn some notable concept class efficiently, meaning that both time and sample complexity scale polynomially in the input length (or almost polynomially, depending on the concept). This concept class at least includes functions where each output token is generated from inputs of earlier tokens using a smooth two-layer neural network.



قيم البحث

اقرأ أيضاً

How can neural networks such as ResNet efficiently learn CIFAR-10 with test accuracy more than 96%, while other methods, especially kernel methods, fall relatively behind? Can we more provide theoretical justifications for this gap? Recently, there is an influential line of work relating neural networks to kernels in the over-parameterized regime, proving they can learn certain concept class that is also learnable by kernels with similar test error. Yet, can neural networks provably learn some concept class BETTER than kernels? We answer this positively in the distribution-free setting. We prove neural networks can efficiently learn a notable class of functions, including those defined by three-layer residual networks with smooth activations, without any distributional assumption. At the same time, we prove there are simple functions in this class such that with the same number of training examples, the test error obtained by neural networks can be MUCH SMALLER than ANY kernel method, including neural tangent kernels (NTK). The main intuition is that multi-layer neural networks can implicitly perform hierarchical learning using different layers, which reduces the sample complexity comparing to one-shot learning algorithms such as kernel methods. In a follow-up work [2], this theory of hierarchical learning is further strengthened to incorporate the backward feature correction process when training deep networks. In the end, we also prove a computation complexity advantage of ResNet with respect to other learning methods including linear regression over arbitrary feature mappings.
We introduce a pruning algorithm that provably sparsifies the parameters of a trained model in a way that approximately preserves the models predictive accuracy. Our algorithm uses a small batch of input points to construct a data-informed importance sampling distribution over the networks parameters, and adaptively mixes a sampling-based and deterministic pruning procedure to discard redundant weights. Our pruning method is simultaneously computationally efficient, provably accurate, and broadly applicable to various network architectures and data distributions. Our empirical comparisons show that our algorithm reliably generates highly compressed networks that incur minimal loss in performance relative to that of the original network. We present experimental results that demonstrate our algorithms potential to unearth essential network connections that can be trained successfully in isolation, which may be of independent interest.
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesnt the trained network overfit when it is overparameterized? In this work, we prove that overparamete rized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network. On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
Neural networks are vulnerable to input perturbations such as additive noise and adversarial attacks. In contrast, human perception is much more robust to such perturbations. The Bayesian brain hypothesis states that human brains use an internal gene rative model to update the posterior beliefs of the sensory input. This mechanism can be interpreted as a form of self-consistency between the maximum a posteriori (MAP) estimation of an internal generative model and the external environment. Inspired by such hypothesis, we enforce self-consistency in neural networks by incorporating generative recurrent feedback. We instantiate this design on convolutional neural networks (CNNs). The proposed framework, termed Convolutional Neural Networks with Feedback (CNN-F), introduces a generative feedback with latent variables to existing CNN architectures, where consistent predictions are made through alternating MAP inference under a Bayesian framework. In the experiments, CNN-F shows considerably improved adversarial robustness over conventional feedforward CNNs on standard benchmarks.
Recurrent neural networks (RNNs), including long short-term memory (LSTM) RNNs, have produced state-of-the-art results on a variety of speech recognition tasks. However, these models are often too large in size for deployment on mobile devices with m emory and latency constraints. In this work, we study mechanisms for learning compact RNNs and LSTMs via low-rank factorizations and parameter sharing schemes. Our goal is to investigate redundancies in recurrent architectures where compression can be admitted without losing performance. A hybrid strategy of using structured matrices in the bottom layers and shared low-rank factors on the top layers is found to be particularly effective, reducing the parameters of a standard LSTM by 75%, at a small cost of 0.3% increase in WER, on a 2,000-hr English Voice Search task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا