ﻻ يوجد ملخص باللغة العربية
Recurrent neural networks (RNNs), including long short-term memory (LSTM) RNNs, have produced state-of-the-art results on a variety of speech recognition tasks. However, these models are often too large in size for deployment on mobile devices with memory and latency constraints. In this work, we study mechanisms for learning compact RNNs and LSTMs via low-rank factorizations and parameter sharing schemes. Our goal is to investigate redundancies in recurrent architectures where compression can be admitted without losing performance. A hybrid strategy of using structured matrices in the bottom layers and shared low-rank factors on the top layers is found to be particularly effective, reducing the parameters of a standard LSTM by 75%, at a small cost of 0.3% increase in WER, on a 2,000-hr English Voice Search task.
Recurrent neural networks (RNNs) have shown clear superiority in sequence modeling, particularly the ones with gated units, such as long short-term memory (LSTM) and gated recurrent unit (GRU). However, the dynamic properties behind the remarkable pe
Unitary Evolution Recurrent Neural Networks (uRNNs) have three attractive properties: (a) the unitary property, (b) the complex-valued nature, and (c) their efficient linear operators. The literature so far does not address -- how critical is the uni
Recurrent Neural Networks (RNN) are widely used to solve a variety of problems and as the quantity of data and the amount of available compute have increased, so have model sizes. The number of parameters in recent state-of-the-art networks makes the
Neural networks are vulnerable to input perturbations such as additive noise and adversarial attacks. In contrast, human perception is much more robust to such perturbations. The Bayesian brain hypothesis states that human brains use an internal gene
We present a self-contained system for constructing natural language models for use in text compression. Our system improves upon previous neural network based models by utilizing recent advances in syntactic parsing -- Googles SyntaxNet -- to augmen