ﻻ يوجد ملخص باللغة العربية
Bacterial biofilm segmentation poses significant challenges due to lack of apparent structure, poor imaging resolution, limited contrast between conterminous cells and high density of cells that overlap. Although there exist bacterial segmentation algorithms in the existing art, they fail to delineate cells in dense biofilms, especially in 3D imaging scenarios in which the cells are growing and subdividing in a complex manner. A graph-based data clustering method, LCuts, is presented with the application on bacterial cell segmentation. By constructing a weighted graph with node features in locations and principal orientations, the proposed method can automatically classify and detect differently oriented aggregations of linear structures (represent by bacteria in the application). The method assists in the assessment of several facets, such as bacterium tracking, cluster growth, and mapping of migration patterns of bacterial biofilms. Quantitative and qualitative measures for 2D data demonstrate the superiority of proposed method over the state of the art. Preliminary 3D results exhibit reliable classification of the cells with 97% accuracy.
These are notes on the method of normalized graph cuts and its applications to graph clustering. I provide a fairly thorough treatment of this deeply original method due to Shi and Malik, including complete proofs. I include the necessary background
Vector space representations of words capture many aspects of word similarity, but such methods tend to make vector spaces in which antonyms (as well as synonyms) are close to each other. We present a new signed spectral normalized graph cut algorith
We propose a new segmentation model combining common regularization energies, e.g. Markov Random Field (MRF) potentials, and standard pairwise clustering criteria like Normalized Cut (NC), average association (AA), etc. These clustering and regulariz
An assumption widely used in recent neural style transfer methods is that image styles can be described by global statics of deep features like Gram or covariance matrices. Alternative approaches have represented styles by decomposing them into local
We study the space complexity of sketching cuts and Laplacian quadratic forms of graphs. We show that any data structure which approximately stores the sizes of all cuts in an undirected graph on $n$ vertices up to a $1+epsilon$ error must use $Omega