ﻻ يوجد ملخص باللغة العربية
These are notes on the method of normalized graph cuts and its applications to graph clustering. I provide a fairly thorough treatment of this deeply original method due to Shi and Malik, including complete proofs. I include the necessary background on graphs and graph Laplacians. I then explain in detail how the eigenvectors of the graph Laplacian can be used to draw a graph. This is an attractive application of graph Laplacians. The main thrust of this paper is the method of normalized cuts. I give a detailed account for K = 2 clusters, and also for K > 2 clusters, based on the work of Yu and Shi. Three points that do not appear to have been clearly articulated before are elaborated: 1. The solutions of the main optimization problem should be viewed as tuples in the K-fold cartesian product of projective space RP^{N-1}. 2. When K > 2, the solutions of the relaxed problem should be viewed as elements of the Grassmannian G(K,N). 3. Two possible Riemannian distances are available to compare the closeness of solutions: (a) The distance on (RP^{N-1})^K. (b) The distance on the Grassmannian. I also clarify what should be the necessary and sufficient conditions for a matrix to represent a partition of the vertices of a graph to be clustered.
Vector space representations of words capture many aspects of word similarity, but such methods tend to make vector spaces in which antonyms (as well as synonyms) are close to each other. We present a new signed spectral normalized graph cut algorith
Bacterial biofilm segmentation poses significant challenges due to lack of apparent structure, poor imaging resolution, limited contrast between conterminous cells and high density of cells that overlap. Although there exist bacterial segmentation al
This is a survey of the method of graph cuts and its applications to graph clustering of weighted unsigned and signed graphs. I provide a fairly thorough treatment of the method of normalized graph cuts, a deeply original method due to Shi and Malik,
One of the key challenges in the area of signal processing on graphs is to design transforms and dictionaries methods to identify and exploit structure in signals on weighted graphs. In this paper, we first generalize graph Fourier transform (GFT) to
We introduce a novel end-to-end approach for learning to cluster in the absence of labeled examples. Our clustering objective is based on optimizing normalized cuts, a criterion which measures both intra-cluster similarity as well as inter-cluster di