ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise-tolerant fair classification

87   0   0.0 ( 0 )
 نشر من قبل Ziyuan Zhong
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Fairness-aware learning involves designing algorithms that do not discriminate with respect to some sensitive feature (e.g., race or gender). Existing work on the problem operates under the assumption that the sensitive feature available in ones training sample is perfectly reliable. This assumption may be violated in many real-world cases: for example, respondents to a survey may choose to conceal or obfuscate their group identity out of fear of potential discrimination. This poses the question of whether one can still learn fair classifiers given noisy sensitive features. In this paper, we answer the question in the affirmative: we show that if one measures fairness using the mean-difference score, and sensitive features are subject to noise from the mutually contaminated learning model, then owing to a simple identity we only need to change the desired fairness-tolerance. The requisite tolerance can be estimated by leveraging existing noise-rate estimators from the label noise literature. We finally show that our procedure is empirically effective on two case-studies involving sensitive feature censoring.



قيم البحث

اقرأ أيضاً

The label bias and selection bias are acknowledged as two reasons in data that will hinder the fairness of machine-learning outcomes. The label bias occurs when the labeling decision is disturbed by sensitive features, while the selection bias occurs when subjective bias exists during the data sampling. Even worse, models trained on such data can inherit or even intensify the discrimination. Most algorithmic fairness approaches perform an empirical risk minimization with predefined fairness constraints, which tends to trade-off accuracy for fairness. However, such methods would achieve the desired fairness level with the sacrifice of the benefits (receive positive outcomes) for individuals affected by the bias. Therefore, we propose a Bias-TolerantFAirRegularizedLoss (B-FARL), which tries to regain the benefits using data affected by label bias and selection bias. B-FARL takes the biased data as input, calls a model that approximates the one trained with fair but latent data, and thus prevents discrimination without constraints required. In addition, we show the effective components by decomposing B-FARL, and we utilize the meta-learning framework for the B-FARL optimization. The experimental results on real-world datasets show that our method is empirically effective in improving fairness towards the direction of true but latent labels.
With the explosion of massive, widely available unlabeled data in the past years, finding label and time efficient, robust learning algorithms has become ever more important in theory and in practice. We study the paradigm of active learning, in whic h algorithms with access to large pools of data may adaptively choose what samples to label in the hope of exponentially increasing efficiency. By introducing comparisons, an additional type of query comparing two points, we provide the first time and query efficient algorithms for learning non-homogeneous linear separators robust to bounded (Massart) noise. We further provide algorithms for a generalization of the popular Tsybakov low noise condition, and show how comparisons provide a strong reliability guarantee that is often impractical or impossible with only labels - returning a classifier that makes no errors with high probability.
Explicit and implicit bias clouds human judgement, leading to discriminatory treatment of minority groups. A fundamental goal of algorithmic fairness is to avoid the pitfalls in human judgement by learning policies that improve the overall outcomes w hile providing fair treatment to protected classes. In this paper, we propose a causal framework that learns optimal intervention policies from data subject to fairness constraints. We define two measures of treatment bias and infer best treatment assignment that minimizes the bias while optimizing overall outcome. We demonstrate that there is a dilemma of balancing fairness and overall benefit; however, allowing preferential treatment to protected classes in certain circumstances (affirmative action) can dramatically improve the overall benefit while also preserving fairness. We apply our framework to data containing student outcomes on standardized tests and show how it can be used to design real-world policies that fairly improve student test scores. Our framework provides a principled way to learn fair treatment policies in real-world settings.
Healthcare programs such as Medicaid provide crucial services to vulnerable populations, but due to limited resources, many of the individuals who need these services the most languish on waiting lists. Survival models, e.g. the Cox proportional haza rds model, can potentially improve this situation by predicting individuals levels of need, which can then be used to prioritize the waiting lists. Providing care to those in need can prevent institutionalization for those individuals, which both improves quality of life and reduces overall costs. While the benefits of such an approach are clear, care must be taken to ensure that the prioritization process is fair or independent of demographic information-based harmful stereotypes. In this work, we develop multiple fairness definitions for survival models and corresponding fair Cox proportional hazards models to ensure equitable allocation of healthcare resources. We demonstrate the utility of our methods in terms of fairness and predictive accuracy on two publicly available survival datasets.
We provide a setting and a general approach to fair online learning with stochastic sensitive and non-sensitive contexts. The setting is a repeated game between the Player and Nature, where at each stage both pick actions based on the contexts. Inspi red by the notion of unawareness, we assume that the Player can only access the non-sensitive context before making a decision, while we discuss both cases of Nature accessing the sensitive contexts and Nature unaware of the sensitive contexts. Adapting Blackwells approachability theory to handle the case of an unknown contexts distribution, we provide a general necessary and sufficient condition for learning objectives to be compatible with some fairness constraints. This condition is instantiated on (group-wise) no-regret and (group-wise) calibration objectives, and on demographic parity as an additional constraint. When the objective is not compatible with the constraint, the provided framework permits to characterise the optimal trade-off between the two.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا