ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise-tolerant, Reliable Active Classification with Comparison Queries

68   0   0.0 ( 0 )
 نشر من قبل Max Hopkins
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

With the explosion of massive, widely available unlabeled data in the past years, finding label and time efficient, robust learning algorithms has become ever more important in theory and in practice. We study the paradigm of active learning, in which algorithms with access to large pools of data may adaptively choose what samples to label in the hope of exponentially increasing efficiency. By introducing comparisons, an additional type of query comparing two points, we provide the first time and query efficient algorithms for learning non-homogeneous linear separators robust to bounded (Massart) noise. We further provide algorithms for a generalization of the popular Tsybakov low noise condition, and show how comparisons provide a strong reliability guarantee that is often impractical or impossible with only labels - returning a classifier that makes no errors with high probability.



قيم البحث

اقرأ أيضاً

Fairness-aware learning involves designing algorithms that do not discriminate with respect to some sensitive feature (e.g., race or gender). Existing work on the problem operates under the assumption that the sensitive feature available in ones trai ning sample is perfectly reliable. This assumption may be violated in many real-world cases: for example, respondents to a survey may choose to conceal or obfuscate their group identity out of fear of potential discrimination. This poses the question of whether one can still learn fair classifiers given noisy sensitive features. In this paper, we answer the question in the affirmative: we show that if one measures fairness using the mean-difference score, and sensitive features are subject to noise from the mutually contaminated learning model, then owing to a simple identity we only need to change the desired fairness-tolerance. The requisite tolerance can be estimated by leveraging existing noise-rate estimators from the label noise literature. We finally show that our procedure is empirically effective on two case-studies involving sensitive feature censoring.
The explosive growth of easily-accessible unlabeled data has lead to growing interest in active learning, a paradigm in which data-hungry learning algorithms adaptively select informative examples in order to lower prohibitively expensive labeling co sts. Unfortunately, in standard worst-case models of learning, the active setting often provides no improvement over non-adaptive algorithms. To combat this, a series of recent works have considered a model in which the learner may ask enriched queries beyond labels. While such models have seen success in drastically lowering label costs, they tend to come at the expense of requiring large amounts of memory. In this work, we study what families of classifiers can be learned in bounded memory. To this end, we introduce a novel streaming-variant of enriched-query active learning along with a natural combinatorial parameter called lossless sample compression that is sufficient for learning not only with bounded memory, but in a query-optimal and computationally efficient manner as well. Finally, we give three fundamental examples of classifier families with small, easy to compute lossless compression schemes when given access to basic enriched queries: axis-aligned rectangles, decision trees, and halfspaces in two dimensions.
We consider the problem of learning linear classifiers when both features and labels are binary. In addition, the features are noisy, i.e., they could be flipped with an unknown probability. In Sy-De attribute noise model, where all features could be noisy together with same probability, we show that $0$-$1$ loss ($l_{0-1}$) need not be robust but a popular surrogate, squared loss ($l_{sq}$) is. In Asy-In attribute noise model, we prove that $l_{0-1}$ is robust for any distribution over 2 dimensional feature space. However, due to computational intractability of $l_{0-1}$, we resort to $l_{sq}$ and observe that it need not be Asy-In noise robust. Our empirical results support Sy-De robustness of squared loss for low to moderate noise rates.
In real-world applications of reinforcement learning (RL), noise from inherent stochasticity of environments is inevitable. However, current policy evaluation algorithms, which plays a key role in many RL algorithms, are either prone to noise or inef ficient. To solve this issue, we introduce a novel policy evaluation algorithm, which we call Gap-increasing RetrAce Policy Evaluation (GRAPE). It leverages two recent ideas: (1) gap-increasing value update operators in advantage learning for noise-tolerance and (2) off-policy eligibility trace in Retrace algorithm for efficient learning. We provide detailed theoretical analysis of the new algorithm that shows its efficiency and noise-tolerance inherited from Retrace and advantage learning. Furthermore, our analysis shows that GRAPEs learning is significantly efficient than that of a simple learning-rate-based approach while keeping the same level of noise-tolerance. We applied GRAPE to control problems and obtained experimental results supporting our theoretical analysis.
We design an active learning algorithm for cost-sensitive multiclass classification: problems where different errors have different costs. Our algorithm, COAL, makes predictions by regressing to each labels cost and predicting the smallest. On a new example, it uses a set of regressors that perform well on past data to estimate possible costs for each label. It queries only the labels that could be the best, ignoring the sure losers. We prove COAL can be efficiently implemented for any regression family that admits squared loss optimization; it also enjoys strong guarantees with respect to predictive performance and labeling effort. We empirically compare COAL to passive learning and several active learning baselines, showing significant improvements in labeling effort and test cost on real-world datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا