ترغب بنشر مسار تعليمي؟ اضغط هنا

NADA-FLD: A General Relativistic, Multi-dimensional Neutrino-hydrodynamics Code Employing Flux-limited Diffusion

102   0   0.0 ( 0 )
 نشر من قبل Hans-Thomas Janka
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ninoy Rahman




اسأل ChatGPT حول البحث

We present the new code NADA-FLD to solve multi-dimensional neutrino-hydrodynamics in full general relativity (GR) in spherical polar coordinates. The energy-dependent neutrino transport assumes the flux-limited diffusion (FLD) approximation and evolves the neutrino energy densities measured in the frame comoving with the fluid. Operator splitting is used to avoid multi-dimensional coupling of grid cells in implicit integration steps involving matrix



قيم البحث

اقرأ أيضاً

We present a new general relativistic (GR) code for hydrodynamic supernova simulations with neutrino transport in spherical and azimuthal symmetry (1D/2D). The code is a combination of the CoCoNuT hydro module, which is a Riemann-solver based, high-r esolution shock-capturing method, and the three-flavor, energy-dependent neutrino transport scheme VERTEX. VERTEX integrates the neutrino moment equations with a variable Eddington factor closure computed from a model Boltzmann equation and uses the ray-by-ray plus approximation in 2D, assuming the neutrino distribution to be axially symmetric around the radial direction, and thus the neutrino flux to be radial. Our spacetime treatment employs the ADM 3+1 formalism with the conformal flatness condition for the spatial three-metric. This approach is exact in 1D and has been shown to yield very accurate results also for rotational stellar collapse. We introduce new formulations of the energy equation to improve total energy conservation in relativistic and Newtonian hydro simulations with Eulerian finite-volume codes. Moreover, a modified version of the VERTEX scheme is developed that simultaneously conserves energy and lepton number with better accuracy and higher numerical stability. To verify our code, we conduct a series of tests, including a detailed comparison with published 1D results for stellar core collapse. Long-time simulations of proto-neutron star cooling over several seconds both demonstrate the robustness of the new CoCoNuT-VERTEX code and show the approximate treatment of GR effects by means of an effective gravitational potential as in PROMETHEUS-VERTEX to be remarkably accurate in 1D. (abridged)
We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino-radiation hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, thre e neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating $27$-$M_odot$ progenitor in full unconstrained 3D and in octant symmetry for $gtrsim$$ 380,mathrm{ms}$. We find the development of an asymmetric runaway explosion in our unconstrained simulation. We test the resolution dependence of our results and, in agreement with previous work, find that low resolution artificially aids explosion and leads to an earlier runaway expansion of the shock. At low resolution, the octant and full 3D dynamics are qualitatively very similar, but at high resolution, only the full 3D simulation exhibits the onset of explosion.
We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the CoCoNuT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using t he extended conformal flatness condition for approximating the spacetime metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 solar mass progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared to Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong non-radial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.
Recent developments in compact object astrophysics, especially the discovery of merging neutron stars by LIGO, the imaging of the black hole in M87 by the Event Horizon Telescope (EHT) and high precision astrometry of the Galactic Center at close to the event horizon scale by the GRAVITY experiment motivate the development of numerical source models that solve the equations of general relativistic magnetohydrodynamics (GRMHD). Here we compare GRMHD solutions for the evolution of a magnetized accretion flow where turbulence is promoted by the magnetorotational instability from a set of nine GRMHD codes: Athena++, BHAC, Cosmos++, ECHO, H-AMR, iharm3D, HARM-Noble, IllinoisGRMHD and KORAL. Agreement between the codes improves as resolution increases, as measured by a consistently applied, specially developed set of code performance metrics. We conclude that the community of GRMHD codes is mature, capable, and consistent on these test problems.
Radiation controls the dynamics and energetics of many astrophysical environments. To capture the coupling between the radiation and matter, however, is often a physically complex and computationally expensive endeavour. We develop a numerical tool t o perform radiation-hydrodynamics simulations in various configurations at an affordable cost. We build upon the finite volume code MPI-AMRVAC to solve the equations of hydrodynamics on multi-dimensional adaptive meshes and introduce a new module to handle the coupling with radiation. A non-equilibrium, flux-limiting diffusion approximation is used to close the radiation momentum and energy equations. The time-dependent radiation energy equation is then solved within a flexible framework, accounting fully for radiation forces and work terms and further allowing the user to adopt a variety of descriptions for the radiation-matter interaction terms (the opacities). We validate the radiation module on a set of standard testcases for which different terms of the radiative energy equation predominate. As a preliminary application to a scientific case, we calculate spherically symmetric models of the radiation-driven and optically thick supersonic outflows from massive Wolf-Rayet stars. This also demonstrates our codes flexibility, as the illustrated simulation combines opacities typically used in static stellar structure models with a parametrised form for the enhanced line-opacity expected in supersonic flows. This new module provides a convenient and versatile tool to perform multi-dimensional and high resolution radiative-hydrodynamics simulations in optically thick environments with the MPI-AMRVAC code. The code is ready to be used for a variety of astrophysical applications, where a first target for us will be multi-dimensional simulations of stellar outflows from Wolf-Rayet stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا