ترغب بنشر مسار تعليمي؟ اضغط هنا

Current-Induced Torques with Dresselhaus Symmetry Due to Resistance Anisotropy in 2D Materials

62   0   0.0 ( 0 )
 نشر من قبل Gregory Stiehl
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of current-induced torques in heterostructures of Permalloy (Py) with TaTe$_2$, a transition-metal dichalcogenide (TMD) material possessing low crystal symmetry, and observe a torque component with Dresselhaus symmetry. We suggest that the dominant mechanism for this Dresselhaus component is not a spin-orbit torque, but rather the Oersted field arising from a component of current that flows perpendicular to the applied voltage due to resistance anisotropy within the TaTe$_2$. This type of transverse current is not present in wires made from a single uniform layer of a material with resistance anisotropy, but will result whenever a material with resistance anisotropy is integrated into a heterostructure with materials having different resistivities, thereby producing a spatially non-uniform pattern of current flow. This effect will therefore influence measurements in a wide variety of heterostructures incorporating 2D TMD materials and other materials with low crystal symmetries.



قيم البحث

اقرأ أيضاً

We analyse the influence of current induced torques on the magnetization configuration of a ferromagnet in a circuit containing a compensated antiferromagnet. We argue that these torques are generically non-zero and support this conclusion with a mic roscopic NEGF calculation for a circuit containing antiferromagnetic NiMn and ferromagnetic Co layers. Because of symmetry dictated differences in the form of the current-induced torque, the phase diagram which expresses the dependence of ferromagnet configuration on current and external magnetic field differs qualitatively from its ferromagnet-only counterpart.
We show that Joule heating causes current-controlled negative differential resistance (CC-NDR) in TiO2 by constructing an analytical model of the voltage-current V(I) characteristic based on polaronic transport for Ohms Law and Newtons Law of Cooling , and fitting this model to experimental data. This threshold switching is the soft breakdown observed during electroforming of TiO2 and other transition-metal-oxide based memristors, as well as a precursor to ON or SET switching of unipolar memristors from their high to their low resistance states. The shape of the V(I) curve is a sensitive indicator of the nature of the polaronic conduction.
Relativistic current induced torques and devices utilizing antiferromagnets have been independently considered as two promising new directions in spintronics research. Here we report electrical measurements of the torques in structures comprising a $ sim1$~nm thick layer of an antiferromagnet IrMn. The reduced Neel temperature and the thickness comparable to the spin-diffusion length allow us to investigate the role of the antiferromagnetic order in the ultra-thin IrMn films in the observed torques. In a Ta/IrMn/CoFeB structure, IrMn in the high-temperature phase diminishes the torque in the CoFeB ferromagnet. At low temperatures, the antidamping torque in CoFeB flips sign as compared to the reference Ta/CoFeB structure, suggesting that IrMn in the antiferromagnetic phase governs the net torque acting on the ferromagnet. At low temperatures, current induced torque signatures are observed also in a Ta/IrMn structure comprising no ferromagnetic layer.
It is shown that the current-induced torques between a ferromagnetic layer and an antiferromagnetic layer with a compensated interface vanish when the ferromagnet is aligned with an axis of spin-rotation symmetry of the antiferromagnet. For properly chosen geometries this implies that the current induced torque can stabilize the out-of-plane (or hard axis) orientation of the ferromagnetic layer. This current-induced torque relies on phase coherent transport, and we calculate the robustness of this torque to phase breaking scattering. From this it is shown that the torque is not linearly dependent on applied current, but has an absolute maximum.
Current-induced torques on ferromagnetic nanoparticles and on domain walls in ferromagnetic nanowires are normally understood in terms of transfer of conserved spin angular momentum between spin-polarized currents and the magnetic condensate. In a se ries of recent articles we have discussed a microscopic picture of current-induced torques in which they are viewed as following from exchange fields produced by the misaligned spins of current carrying quasiparticles. This picture has the advantage that it can be applied to systems in which spin is not approximately conserved. More importantly, this point of view makes it clear that current-induced torques can also act on the order parameter of an antiferromagnetic metal, even though this quantity is not related to total spin. In this informal and intentionally provocative review we explain this picture and discuss its application to antiferromagnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا