ترغب بنشر مسار تعليمي؟ اضغط هنا

Current-induced torques due to compensated antiferromagnets

119   0   0.0 ( 0 )
 نشر من قبل Paul Haney Mr.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the influence of current induced torques on the magnetization configuration of a ferromagnet in a circuit containing a compensated antiferromagnet. We argue that these torques are generically non-zero and support this conclusion with a microscopic NEGF calculation for a circuit containing antiferromagnetic NiMn and ferromagnetic Co layers. Because of symmetry dictated differences in the form of the current-induced torque, the phase diagram which expresses the dependence of ferromagnet configuration on current and external magnetic field differs qualitatively from its ferromagnet-only counterpart.



قيم البحث

اقرأ أيضاً

It is shown that the current-induced torques between a ferromagnetic layer and an antiferromagnetic layer with a compensated interface vanish when the ferromagnet is aligned with an axis of spin-rotation symmetry of the antiferromagnet. For properly chosen geometries this implies that the current induced torque can stabilize the out-of-plane (or hard axis) orientation of the ferromagnetic layer. This current-induced torque relies on phase coherent transport, and we calculate the robustness of this torque to phase breaking scattering. From this it is shown that the torque is not linearly dependent on applied current, but has an absolute maximum.
We report measurements of current-induced torques in heterostructures of Permalloy (Py) with TaTe$_2$, a transition-metal dichalcogenide (TMD) material possessing low crystal symmetry, and observe a torque component with Dresselhaus symmetry. We sugg est that the dominant mechanism for this Dresselhaus component is not a spin-orbit torque, but rather the Oersted field arising from a component of current that flows perpendicular to the applied voltage due to resistance anisotropy within the TaTe$_2$. This type of transverse current is not present in wires made from a single uniform layer of a material with resistance anisotropy, but will result whenever a material with resistance anisotropy is integrated into a heterostructure with materials having different resistivities, thereby producing a spatially non-uniform pattern of current flow. This effect will therefore influence measurements in a wide variety of heterostructures incorporating 2D TMD materials and other materials with low crystal symmetries.
In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here, we calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism using first principles methods. We focus exclusively on the analogue to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the field-like torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.
We study the laser-induced torques in the antiferromagnet (AFM) Mn$_2$Au. We find that even linearly polarized light may induce laser-induced torques in Mn$_2$Au, i.e., the light does not have to be circularly polarized. The laser-induced torques in Mn$_2$Au are comparable in magnitude to those in the ferromagnets Fe, Co and FePt at optical frequencies. We also compute the laser-induced torques at terahertz (THz) frequencies and compare them to the spin-orbit torques (SOTs) excited by THz laser-pulses. We find the SOTs to be dominant at THz frequencies for the laser-field strengths used in experiments. Additionally, we show that the matrix elements of the spin-orbit interaction (SOI) can be used to add SOI only during the Wannier interpolation, which we call Wannier interpolation of SOI (WISOI). This technique allows us to perform the Wannier interpolation conveniently for many magnetization directions from a single set of Wannier functions.
Current-induced torques on ferromagnetic nanoparticles and on domain walls in ferromagnetic nanowires are normally understood in terms of transfer of conserved spin angular momentum between spin-polarized currents and the magnetic condensate. In a se ries of recent articles we have discussed a microscopic picture of current-induced torques in which they are viewed as following from exchange fields produced by the misaligned spins of current carrying quasiparticles. This picture has the advantage that it can be applied to systems in which spin is not approximately conserved. More importantly, this point of view makes it clear that current-induced torques can also act on the order parameter of an antiferromagnetic metal, even though this quantity is not related to total spin. In this informal and intentionally provocative review we explain this picture and discuss its application to antiferromagnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا