ﻻ يوجد ملخص باللغة العربية
We use the exponential random graph models to understand the network structure and its generative process for the Japanese bipartite network of banks and firms. One of the well known and simple model of exponential random graph is the Bernoulli model which shows the links in the bank-firm network are not independent from each other. Another popular exponential random graph model, the two star model, indicates that the bank-firms are in a state where macroscopic variables of the system can show large fluctuations. Moreover, the presence of high fluctuations reflect a fragile nature of the bank-firm network.
Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in
Exponential-family random graph models (ERGMs) provide a principled way to model and simulate features common in human social networks, such as propensities for homophily and friend-of-a-friend triad closure. We show that, without adjustment, ERGMs p
We introduce two models of inclusion hierarchies: Random Graph Hierarchy (RGH) and Limited Random Graph Hierarchy (LRGH). In both models a set of nodes at a given hierarchy level is connected randomly, as in the ErdH{o}s-R{e}nyi random graph, with a
Exponential-family random graph models (ERGMs) provide a principled and flexible way to model and simulate features common in social networks, such as propensities for homophily, mutuality, and friend-of-a-friend triad closure, through choice of mode
Exponential family Random Graph Models (ERGMs) can be viewed as expressing a probability distribution on graphs arising from the action of competing social forces that make ties more or less likely, depending on the state of the rest of the graph. Su