ﻻ يوجد ملخص باللغة العربية
Exponential Random Graph Models (ERGMs) have gained increasing popularity over the years. Rooted into statistical physics, the ERGMs framework has been successfully employed for reconstructing networks, detecting statistically significant patterns in graphs, counting networked configurations with given properties. From a technical point of view, the ERGMs workflow is defined by two subsequent optimization steps: the first one concerns the maximization of Shannon entropy and leads to identify the functional form of the ensemble probability distribution that is maximally non-committal with respect to the missing information; the second one concerns the maximization of the likelihood function induced by this probability distribution and leads to its numerical determination. This second step translates into the resolution of a system of $O(N)$ non-linear, coupled equations (with $N$ being the total number of nodes of the network under analysis), a problem that is affected by three main issues, i.e. accuracy, speed and scalability. The present paper aims at addressing these problems by comparing the performance of three algorithms (i.e. Newtons method, a quasi-Newton method and a recently-proposed fixed-point recipe) in solving several ERGMs, defined by binary and weighted constraints in both a directed and an undirected fashion. While Newtons method performs best for relatively little networks, the fixed-point recipe is to be preferred when large configurations are considered, as it ensures convergence to the solution within seconds for networks with hundreds of thousands of nodes (e.g. the Internet, Bitcoin). We attach to the paper a Python code implementing the three aforementioned algorithms on all the ERGMs considered in the present work.
We use the exponential random graph models to understand the network structure and its generative process for the Japanese bipartite network of banks and firms. One of the well known and simple model of exponential random graph is the Bernoulli model
Exponential family Random Graph Models (ERGMs) can be viewed as expressing a probability distribution on graphs arising from the action of competing social forces that make ties more or less likely, depending on the state of the rest of the graph. Su
The irreversibility of trajectories in stochastic dynamical systems is linked to the structure of their causal representation in terms of Bayesian networks. We consider stochastic maps resulting from a time discretization with interval tau of signal-
We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a and variance va. These two control parameters determine if the avalanche
The subjects of the paper are the likelihood method (LM) and the expected Fisher information (FI) considered from the point od view of the construction of the physical models which originate in the statistical description of phenomena. The master equ