ترغب بنشر مسار تعليمي؟ اضغط هنا

On (The Lack Of) Location Privacy in Crowdsourcing Applications

65   0   0.0 ( 0 )
 نشر من قبل Spyros Boukoros
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Crowdsourcing enables application developers to benefit from large and diverse datasets at a low cost. Specifically, mobile crowdsourcing (MCS) leverages users devices as sensors to perform geo-located data collection. The collection of geolocated data raises serious privacy concerns for users. Yet, despite the large research body on location privacy-preserving mechanisms (LPPMs), MCS developers implement little to no protection for data collection or publication. To understand this mismatch, we study the performance of existing LPPMs on publicly available data from two mobile crowdsourcing projects. Our results show that well-established defenses are either not applicable or offer little protection in the MCS setting. Additionally, they have a much stronger impact on applications utility than foreseen in the literature. This is because existing LPPMs, designed with location-based services (LBSs) in mind, are optimized for utility functions based on users locations, while MCS utility functions depend on the values (e.g., measurements) associated with those locations. We finally outline possible research avenues to facilitate the development of new location privacy solutions that fit the needs of MCS so that the increasing number of such applications do not jeopardize their users privacy.



قيم البحث

اقرأ أيضاً

In recent years, concerns about location privacy are increasing with the spread of location-based services (LBSs). Many methods to protect location privacy have been proposed in the past decades. Especially, perturbation methods based on Geo-Indistin guishability (Geo-I), which randomly perturb a true location to a pseudolocation, are getting attention due to its strong privacy guarantee inherited from differential privacy. However, Geo-I is based on the Euclidean plane even though many LBSs are based on road networks (e.g. ride-sharing services). This causes unnecessary noise and thus an insufficient tradeoff between utility and privacy for LBSs on road networks. To address this issue, we propose a new privacy notion, Geo-Graph-Indistinguishability (GG-I), for locations on a road network to achieve a better tradeoff. We propose Graph-Exponential Mechanism (GEM), which satisfies GG-I. Moreover, we formalize the optimization problem to find the optimal GEM in terms of the tradeoff. However, the computational complexity of a naive method to find the optimal solution is prohibitive, so we propose a greedy algorithm to find an approximate solution in an acceptable amount of time. Finally, our experiments show that our proposed mechanism outperforms a Geo-Is mechanism with respect to the tradeoff.
Location-Based Services (LBSs) provide invaluable aid in the everyday activities of many individuals, however they also pose serious threats to the user privacy. There is, therefore, a growing interest in the development of mechanisms to protect loca tion privacy during the use of LBSs. Nowadays, the most popular methods are probabilistic, and the so-called optimal method achieves an optimal trade-off between privacy and utility by using linear optimization techniques. Unfortunately, due to the complexity of linear programming, the method is unfeasible for a large number n of locations, because the constraints are $O(n^3)$. In this paper, we propose a technique to reduce the number of constraints to $O(n^2)$, at the price of renouncing to perfect optimality. We show however that on practical situations the utility loss is quite acceptable, while the gain in performance is significant.
In this paper, we study the privacy-preserving task assignment in spatial crowdsourcing, where the locations of both workers and tasks, prior to their release to the server, are perturbed with Geo-Indistinguishability (a differential privacy notion f or location-based systems). Different from the previously studied online setting, where each task is assigned immediately upon arrival, we target the batch-based setting, where the server maximizes the number of successfully assigned tasks after a batch of tasks arrive. To achieve this goal, we propose the k-Switch solution, which first divides the workers into small groups based on the perturbed distance between workers/tasks, and then utilizes Homomorphic Encryption (HE) based secure computation to enhance the task assignment. Furthermore, we expedite HE-based computation by limiting the size of the small groups under k. Extensive experiments demonstrate that, in terms of the number of successfully assigned tasks, the k-Switch solution improves batch-based baselines by 5.9X and the existing online solution by 1.74X, with no privacy leak.
191 - Jiajun Sun 2013
Recently, a novel class of incentive mechanisms is proposed to attract extensive users to truthfully participate in crowd sensing applications with a given budget constraint. The class mechanisms also bring good service quality for the requesters in crowd sensing applications. Although it is so important, there still exists many verification and privacy challenges, including users bids and subtask information privacy and identification privacy, winners set privacy of the platform, and the security of the payment outcomes. In this paper, we present a privacy-preserving verifiable incentive mechanism for crowd sensing applications with the budget constraint, not only to explore how to protect the privacies of users and the platform, but also to make the verifiable payment correct between the platform and users for crowd sensing applications. Results indicate that our privacy-preserving verifiable incentive mechanism achieves the same results as the generic one without privacy preservation.
Location privacy has been extensively studied in the literature. However, existing location privacy models are either not rigorous or not customizable, which limits the trade-off between privacy and utility in many real-world applications. To address this issue, we propose a new location privacy notion called PGLP, i.e., textit{Policy Graph based Location Privacy}, providing a rich interface to release private locations with customizable and rigorous privacy guarantee. First, we design the privacy metrics of PGLP by extending differential privacy. Specifically, we formalize a users location privacy requirements using a textit{location policy graph}, which is expressive and customizable. Second, we investigate how to satisfy an arbitrarily given location policy graph under adversarial knowledge. We find that a location policy graph may not always be viable and may suffer textit{location exposure} when the attacker knows the users mobility pattern. We propose efficient methods to detect location exposure and repair the policy graph with optimal utility. Third, we design a private location trace release framework that pipelines the detection of location exposure, policy graph repair, and private trajectory release with customizable and rigorous location privacy. Finally, we conduct experiments on real-world datasets to verify the effectiveness of the privacy-utility trade-off and the efficiency of the proposed algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا