ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal dynamics of light-written waveguides in unbiased liquid crystals

63   0   0.0 ( 0 )
 نشر من قبل Alessandro Alberucci
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The control of light by light is one of the main aims in modern photonics. In this context, a fundamental cornerstone is the realization of light-written waveguides in real time, resulting in all-optical reconfigurability of communication networks. Light-written waveguides are often associated with spatial solitons, that is, non-diffracting waves due to a nonlinear self-focusing effect in the harmonic regime. From an applicative point of view, it is important to establish the temporal dynamics for the formation of such light-written guides. Here we investigate theoretically the temporal dynamics in nematic liquid crystals, a material where spatial solitons can be induced using continuous wave (CW) lasers with few milliWatts power. We fully address the role of the spatial walk-off and the longitudinal nonlocality in the waveguide formation. We show that, for powers large enough to induce light self-steering, the beam undergoes several fluctuations before reaching the stationary regime, in turn leading to a much longer formation time for the light-written waveguide.



قيم البحث

اقرأ أيضاً

Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as providing a technique for their optimization.
Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner-Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomen a as well as a high filling factor of the energy residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light-matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized absorbance cells for optical detection in lab-on-a-chip systems.
A first demonstration and complete characterization of mid-infrared waveguides in diamond are reported in detail. Waveguides were designed for 2.4 um and 8.6 um waveguiding, with their group velocity dispersion was analyzed using femtosecond pulses a t 2.4 um wavelength propagated through the waveguide and the bulk substrate. The total dispersion was found to be dominated by the bulk material rather than the waveguide, and was on the range of 275 fs2/mm, demonstrating that femtosecond laser written modifications in diamond introduce negligible perturbations to the intrinsic material.
We present a practical approach to the numerical optimisation of the guiding properties of buried microstructured waveguides, which can be fabricated in a z-cut lithium niobate (LiNbO3) crystal by the method of direct femtosecond laser inscription. W e demonstrate the possibility to extend the spectral range of low-loss operation of the waveguide into the mid-infrared region beyond 3{mu}m.
180 - Yikun Liu , Shenhe Fu , Xing Zhu 2015
Nonlinear optical propagation in cholesteric liquid crystals (CLC) with a spatially periodic helical molecular structure is studied experimentally and modeled numerically. This periodic structure can be seen as a Bragg grating with a propagation stop band for circularly polarized light. The CLC nonlinearity can be strengthened by adding absorption dye, thus reducing the nonlinear intensity threshold and the necessary propagation length. As the input power increases, a blue shift of the stopband is induced by the self-defocusing nonlinearity, leading to a substantial enhancement of the transmission and spreading of the beam. With further increase of the input power, the self-defocusing nonlinearity saturates, and the beam propagates as in the linear-diffraction regime. A system of nonlinear couple-mode equations is used to describe the propagation of the beam. Numerical results agree well with the experiment findings, suggesting that modulation of intensity and spatial profile of the beam can be achieved simultaneously under low input intensities in a compact CLC-based micro-device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا