ﻻ يوجد ملخص باللغة العربية
Electric field control of magnetic anisotropy in ferromagnets has been intensively pursued in spintronics to achieve efficient memory and computing devices with low energy consumption. Compared with ferromagnets, antiferromagnets hold huge potential in high-density information storage for their ultrafast spin dynamics and vanishingly small stray field. However, the switching of magnetic anisotropy of antiferromagnets via electric field remains elusive. Here we use ferroelastic strain from piezoelectric materials to switch the uniaxial magnetic anisotropy and the Neel order reversibly in antiferromagnetic Mn2Au films with an electric field of only a few kV/cm at room temperature. Owing to the uniaxial magnetic anisotropy, a ratchet-like switching behavior driven by the Neel spin-orbit torque is observed in the Mn2Au, which can be reversed by electric fields.
Atomic-scale magnetic nanostructures are promising candidates for future information processing devices. Utilizing external electric field to manipulate their magnetic properties is an especially thrilling project. Here, by careful identifying differ
Antiferroelectrics have been recently sparking interest due to their potential use in energy storage and electrocaloric cooling. Their main distinctive feature is antiferroelectric switching, i.e. the possibility to induce a phase transition to a pol
Electric-field (E-field) control of magnetism enabled by multiferroics has the potential to revolutionize the landscape of present memory devices plagued with high energy dissipation. To date, this E-field controlled multiferroic scheme at room tempe
Since it is undesirable to require an external magnetic field for on-chip memory applications, we investigate the use of a Rashba effective field alternatively for assisting the electric-field-induced switching operation of a three terminal perpendic
The electric field (EF) effect on the magnetic domain structure of a Pt/Co system was studied, where an EF was applied to the top surface of the Co layer. The width of the maze domain was significantly modified by the application of the EF at a tempe