ﻻ يوجد ملخص باللغة العربية
Electric-field (E-field) control of magnetism enabled by multiferroics has the potential to revolutionize the landscape of present memory devices plagued with high energy dissipation. To date, this E-field controlled multiferroic scheme at room temperature has only been demonstrated using BiFeO3 (BFO) films grown on DyScO3 (refs 1 and 2), a unique and expensive substrate, which gives rise to a particular ferroelectric domain pattern in BFO. Here, we demonstrate reversible E-field-induced switching of the magnetic state of the Co layer in Co/BFO (001) thin film heterostructures fabricated on SrTiO3 substrates. The angular dependence of the coercivity and the remanent magnetization of the Co layer indicates that its easy axis reversibly switches by 45{deg} back and forth between the (100) and the (110) crystallographic directions of SrTiO3 as a result of alternating application of positive and negative voltage pulses on BFO. The coercivity of the Co layer exhibits a hysteretic behavior between two states as a function of voltage. To explain the observation, we have also measured the exact canting angle of the antiferromagnetic G-type domain in BFO films for the first time using neutron diffraction. These results suggest a pathway to integrating BFO-based devices on Si wafers for implementing low power consumption and non-volatile magnetoelectronic devices.
We propose a way to use electric-field to control the magnetic ordering of the tetragonal BiFeO3. Based on systematic first-principles studies of the epitaxial strain effect on the ferroelectric and magnetic properties of the tetragonal BiFeO3, we fi
First-principles density-functional theory calculations show switching magnetization by 90 degree can be achieved in ultrathin BFO film by applying external electric-field. Up-spin carriers appear to the surface with positive field while down-spin on
Control of magnetic domain wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain wall moti
The photovoltaic effect in the BiFeO3/TiO2 heterostructures can be tuned by epitaxial strain and an electric field in the visible-light region which is manifested by the enhancement of absorption activity in the heterojunction under tensile strain an
We examine the magnetic easy-axis directions of stoichiometric magnetite films grown on SrTiO3:Nb by infrared pulsed-laser deposition. Spin-polarized low-energy electron microscopy reveals that the individual magnetic domains are magnetized along the