ترغب بنشر مسار تعليمي؟ اضغط هنا

Physarum Dynamics and Optimal Transport for Basis Pursuit

102   0   0.0 ( 0 )
 نشر من قبل Enrico Facca
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the connections between Physarum Dynamics and Dynamic Monge Kantorovich (DMK) Optimal Transport algorithms for the solution of Basis Pursuit problems. We show the equivalence between these two models and unveil their dynamic character by showing existence and uniqueness of the solution for all times and constructing a Lyapunov functional with negative Lie-derivative that drives the large-time convergence. We propose a discretization of the equation by means of a combination of implicit time-stepping and Newton method yielding an efficient and robust method for the solution of general basis pursuit problems. Several numerical experiments run on literature benchmark problems are used to show the accuracy, efficiency, and robustness of the proposed method.



قيم البحث

اقرأ أيضاً

Recently a Dynamic-Monge-Kantorovich formulation of the PDE-based $L^1$-optimal transport problem was presented. The model considers a diffusion equation enforcing the balance of the transported masses with a time-varying conductivity that volves pro portionally to the transported flux. In this paper we present an extension of this model that considers a time derivative of the conductivity that grows as a power law of the transport flux with exponent $beta>0$. A sub-linear growth ($0<beta<1$) penalizes the flux intensity and promotes distributed transport, with equilibrium solutions that are reminiscent of Congested Transport Problems. On the contrary, a super-linear growth ($beta>1$) favors flux intensity and promotes concentrated transport, leading to the emergence of steady-state singular and fractal-like configurations that resemble those of Branched Transport Problems. We derive a numerical discretization of the proposed model that is accurate, efficient, and robust for a wide range of scenarios. For $beta>1$ the numerical model is able to reproduce highly irregular and fractal-like formations without any a-priory structural assumption.
In this article we study the numerical solution of the $L^1$-Optimal Transport Problem on 2D surfaces embedded in $R^3$, via the DMK formulation introduced in [FaccaCardinPutti:2018]. We extend from the Euclidean into the Riemannian setting the DMK m odel and conjecture the equivalence with the solution Monge-Kantorovich equations, a PDE-based formulation of the $L^1$-Optimal Transport Problem. We generalize the numerical method proposed in [FaccaCardinPutti:2018,FaccaDaneriCardinPutti:2020] to 2D surfaces embedded in $REAL^3$ using the Surface Finite Element Model approach to approximate the Laplace-Beltrami equation arising from the model. We test the accuracy and efficiency of the proposed numerical scheme, comparing our approximate solution with respect to an exact solution on a 2D sphere. The results show that the numerical scheme is efficient, robust, and more accurate with respect to other numerical schemes presented in the literature for the solution of ls$L^1$-Optimal Transport Problem on 2D surfaces.
In this paper, we give a new characterization of the cut locus of a point on a compact Riemannian manifold as the zero set of the optimal transport density solution of the Monge-Kantorovich equations, a PDE formulation of the optimal transport proble m with cost equal to the geodesic distance. Combining this result with an optimal transport numerical solver based on the so-called dynamical Monge-Kantorovich approach, we propose a novel framework for the numerical approximation of the cut locus of a point in a manifold. We show the applicability of the proposed method on a few examples settled on 2d-surfaces embedded in $R^{3}$ and discuss advantages and limitations.
292 - An-Bao Xu 2020
This paper considers the completion problem for a tensor (also referred to as a multidimensional array) from limited sampling. Our greedy method is based on extending the low-rank approximation pursuit (LRAP) method for matrix completions to tensor c ompletions. The method performs a tensor factorization using the tensor singular value decomposition (t-SVD) which extends the standard matrix SVD to tensors. The t-SVD leads to a notion of rank, called tubal-rank here. We want to recreate the data in tensors from low resolution samples as best we can here. To complete a low resolution tensor successfully we assume that the given tensor data has low tubal-rank. For tensors of low tubal-rank, we establish convergence results for our method that are based on the tensor restricted isometry property (TRIP). Our result with the TRIP condition for tensors is similar to low-rank matrix completions under the RIP condition. The TRIP condition uses the t-SVD for low tubal-rank tensors, while RIP uses the SVD for matrices. We show that a subgaussian measurement map satisfies the TRIP condition with high probability and gives an almost optimal bound on the number of required measurements. We compare the numerical performance of the proposed algorithm with those for state-of-the-art approaches on video recovery and color image recovery.
In this paper, we study how to quickly compute the <-minimal monomial interpolating basis for a multivariate polynomial interpolation problem. We address the notion of reverse reduced basis of linearly independent polynomials and design an algorithm for it. Based on the notion, for any monomial ordering we present a new method to read off the <-minimal monomial interpolating basis from monomials appearing in the polynomials representing the interpolation conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا