ﻻ يوجد ملخص باللغة العربية
We study the connections between Physarum Dynamics and Dynamic Monge Kantorovich (DMK) Optimal Transport algorithms for the solution of Basis Pursuit problems. We show the equivalence between these two models and unveil their dynamic character by showing existence and uniqueness of the solution for all times and constructing a Lyapunov functional with negative Lie-derivative that drives the large-time convergence. We propose a discretization of the equation by means of a combination of implicit time-stepping and Newton method yielding an efficient and robust method for the solution of general basis pursuit problems. Several numerical experiments run on literature benchmark problems are used to show the accuracy, efficiency, and robustness of the proposed method.
Recently a Dynamic-Monge-Kantorovich formulation of the PDE-based $L^1$-optimal transport problem was presented. The model considers a diffusion equation enforcing the balance of the transported masses with a time-varying conductivity that volves pro
In this article we study the numerical solution of the $L^1$-Optimal Transport Problem on 2D surfaces embedded in $R^3$, via the DMK formulation introduced in [FaccaCardinPutti:2018]. We extend from the Euclidean into the Riemannian setting the DMK m
In this paper, we give a new characterization of the cut locus of a point on a compact Riemannian manifold as the zero set of the optimal transport density solution of the Monge-Kantorovich equations, a PDE formulation of the optimal transport proble
This paper considers the completion problem for a tensor (also referred to as a multidimensional array) from limited sampling. Our greedy method is based on extending the low-rank approximation pursuit (LRAP) method for matrix completions to tensor c
In this paper, we study how to quickly compute the <-minimal monomial interpolating basis for a multivariate polynomial interpolation problem. We address the notion of reverse reduced basis of linearly independent polynomials and design an algorithm