ﻻ يوجد ملخص باللغة العربية
Recently a Dynamic-Monge-Kantorovich formulation of the PDE-based $L^1$-optimal transport problem was presented. The model considers a diffusion equation enforcing the balance of the transported masses with a time-varying conductivity that volves proportionally to the transported flux. In this paper we present an extension of this model that considers a time derivative of the conductivity that grows as a power law of the transport flux with exponent $beta>0$. A sub-linear growth ($0<beta<1$) penalizes the flux intensity and promotes distributed transport, with equilibrium solutions that are reminiscent of Congested Transport Problems. On the contrary, a super-linear growth ($beta>1$) favors flux intensity and promotes concentrated transport, leading to the emergence of steady-state singular and fractal-like configurations that resemble those of Branched Transport Problems. We derive a numerical discretization of the proposed model that is accurate, efficient, and robust for a wide range of scenarios. For $beta>1$ the numerical model is able to reproduce highly irregular and fractal-like formations without any a-priory structural assumption.
In this paper, we give a new characterization of the cut locus of a point on a compact Riemannian manifold as the zero set of the optimal transport density solution of the Monge-Kantorovich equations, a PDE formulation of the optimal transport proble
We study the connections between Physarum Dynamics and Dynamic Monge Kantorovich (DMK) Optimal Transport algorithms for the solution of Basis Pursuit problems. We show the equivalence between these two models and unveil their dynamic character by sho
In this work, we introduce a nonlinear Lanchester model of NCW-type and study a problem of finding the optimal fire allocation for this model. A Blue party $B$ will fight against a Red party consisting of $A$ and $R$, where $A$ is an independent forc
In this article we study the numerical solution of the $L^1$-Optimal Transport Problem on 2D surfaces embedded in $R^3$, via the DMK formulation introduced in [FaccaCardinPutti:2018]. We extend from the Euclidean into the Riemannian setting the DMK m
In this paper, a thermal-dynamical consistent model for mass transfer across permeable moving interfaces is proposed by using the energy variation method. We consider a restricted diffusion problem where the flux across the interface depends on its c