ﻻ يوجد ملخص باللغة العربية
Magic-state distillation (or non-stabilizer state manipulation) is a crucial component in the leading approaches to realizing scalable, fault-tolerant, and universal quantum computation. Related to non-stabilizer state manipulation is the resource theory of non-stabilizer states, for which one of the goals is to characterize and quantify non-stabilizerness of a quantum state. In this paper, we introduce the family of thauma measures to quantify the amount of non-stabilizerness in a quantum state, and we exploit this family of measures to address several open questions in the resource theory of non-stabilizer states. As a first application, we establish the hypothesis testing thauma as an efficiently computable benchmark for the one-shot distillable non-stabilizerness, which in turn leads to a variety of bounds on the rate at which non-stabilizerness can be distilled, as well as on the overhead of magic-state distillation. We then prove that the max-thauma can be used as an efficiently computable tool in benchmarking the efficiency of magic-state distillation and that it can outperform pervious approaches based on mana. Finally, we use the min-thauma to bound a quantity known in the literature as the regularized relative entropy of magic. As a consequence of this bound, we find that two classes of states with maximal mana, a previously established non-stabilizerness measure, cannot be interconverted in the asymptotic regime at a rate equal to one. This result resolves a basic question in the resource theory of non-stabilizer states and reveals a difference between the resource theory of non-stabilizer states and other resource theories such as entanglement and coherence.
Magic state distillation protocols have a complicated non-linear nature. Analysis of protocols is therefore usually restricted to one-parameter families of states, which aids tractability. We show that if we lift this one-parameter restriction and em
Recently we proposed a family of magic state distillation protocols that obtains asymptotic performance that is conjectured to be optimal. This family depends upon several codes, called inner codes and outer codes. We presented some small examples of
Magic can be distributed non-locally in many-body entangled states, such as the low energy states of condensed matter systems. Using the Bravyi-Kitaev magic state distillation protocol, we find that non-local magic is distillable and can improve the
A set of stabilizer operations augmented by some special initial states known as magic states, gives the possibility of universal fault-tolerant quantum computation. However, magic state preparation inevitably involves nonideal operations that introd
The security of quantum key distribution has traditionally been analyzed in either the asymptotic or non-asymptotic regimes. In this paper, we provide a bridge between these two regimes, by determining second-order coding rates for key distillation i