ترغب بنشر مسار تعليمي؟ اضغط هنا

Increasing the Discovery Potential Using Rare SUSY Scenarios Part I: Gluinos

71   0   0.0 ( 0 )
 نشر من قبل Linda Carpenter
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we consider the HL-LHC discovery potential in the 3 inverse ab data set for gluinos in the gluino-weakino associated production channel. We propose a search in the jets plus missing energy channel which exploits kinematic edge features in the reconstructed transverse mass of the gluino. We find that for squark masses in the 2 TeV range we have 5 sigma discovery potential for gluino masses in the range of 2.4 to 3 TeV, competitive with the projections for discovery potential in the gluino pair production channel.



قيم البحث

اقرأ أيضاً

Recent evidence from the LHC for the Higgs boson with mass between 142 GeV < m_h < 147GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moder ate lifetime gluinos, with decay lengths in the 25 microns to 10 years range, are its imminent smoking gun signature. The 7 TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m_chi = 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.
163 - Radovan Dermisek 2017
This talk provides a limited review of SUSY scenarios with the focus on the way electroweak symmetry breaking is achieved and understood under different assumptions. Various aspects of naturalness and their implications are discussed and compared.
Combined analyses at the Large Hadron Collider and at the International Linear Collider are important to unravel a difficult region of supersymmetry that is characterized by scalar SUSY particles with masses around 2 TeV. Precision measurements of ma sses, cross sections and forward-backward asymmetries allow to determine the fundamental supersymmetric parameters even if only a small part of the spectrum is accessible. Mass constraints for the heavy particles can be derived.
We present a preliminary study on the possibility to search for massive long-lived electrically charged particles at the MoEDAL detector. MoEDAL is sensitive to highly ionising objects such as magnetic monopoles or massive (meta-)stable electrically charged particles and we focus on the latter in this paper. Requirements on triggering or reducing the cosmic-ray and cavern background, applied in the ATLAS and CMS analyses for long-lived particles, are not necessary at MoEDAL, due to its completely different detector design and extremely low background. On the other hand, MoEDAL requires slow-moving particles, resulting in sensitivity to massive states with typically small production cross sections. Using Monte Carlo simulations, we compare the sensitivities of MoEDAL versus ATLAS/CMS for various long-lived particles in supersymmetric models, and we seek a scenario where MoEDAL can provide discovery reach complementary to ATLAS and CMS.
We carry out an analysis of the potential of the Large Hadron Collider (LHC) to discover supersymmetry in runs at $sqrt s=7$ TeV with an accumulated luminosity of (0.1--2) fb$^{-1}$ of data. The analysis is done both with minimal supergravity (mSUGRA ) and supergravity (SUGRA) models with non-universal soft breaking. Benchmarks for early discovery with (0.1--2) fb$^{-1}$ of data are given. We provide an update of b-tagging efficiencies in PGS 4 appropriate for LHC analyses. A large number of signature channels are analyzed and it is shown that each of the models exhibited are discoverable at the 5$sigma$ level or more above the standard model background in several signature channels which would provide cross checks for a discovery of supersymmetry (SUSY). It is shown that some of the benchmarks are discoverable with 0.1 fb$^{-1}$ of data again with detectable signals in several channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا