ﻻ يوجد ملخص باللغة العربية
Let $ X_{lambda_1},ldots,X_{lambda_n}$ be dependent non-negative random variables and $Y_i=I_{p_i} X_{lambda_i}$, $i=1,ldots,n$, where $I_{p_1},ldots,I_{p_n}$ are independent Bernoulli random variables independent of $X_{lambda_i}$s, with ${rm E}[I_{p_i}]=p_i$, $i=1,ldots,n$. In actuarial sciences, $Y_i$ corresponds to the claim amount in a portfolio of risks. In this paper, we compare the largest claim amounts of two sets of interdependent portfolios, in the sense of usual stochastic order, when the variables in one set have the parameters $lambda_1,ldots,lambda_n$ and $p_1,ldots,p_n$ and the variables in the other set have the parameters $lambda^{*}_1,ldots,lambda^{*}_n$ and $p^*_1,ldots,p^*_n$. For illustration, we apply the results to some important models in actuary.
Let $ X_{lambda_1},ldots,X_{lambda_n}$ be a set of dependent and non-negative random variables share a survival copula and let $Y_i= I_{p_i}X_{lambda_i}$, $i=1,ldots,n$, where $I_{p_1},ldots,I_{p_n}$ be independent Bernoulli random variables independ
Let $X_{lambda_1}, ldots , X_{lambda_n}$ be independent non-negative random variables belong to the transmuted-G model and let $Y_i=I_{p_i} X_{lambda_i}$, $i=1,ldots,n$, where $I_{p_1}, ldots, I_{p_n}$ are independent Bernoulli random variables indep
Financial markets are exposed to systemic risk, the risk that a substantial fraction of the system ceases to function and collapses. Systemic risk can propagate through different mechanisms and channels of contagion. One important form of financial c
Discussion of ``2004 IMS Medallion Lecture: Local Rademacher complexities and oracle inequalities in risk minimization by V. Koltchinskii [arXiv:0708.0083]
We consider expected performances based on max-stable random fields and we are interested in their derivatives with respect to the spatial dependence parameters of those fields. Max-stable fields, such as the Brown--Resnick and Smith fields, are very