ﻻ يوجد ملخص باللغة العربية
We report on an intriguing observation that the values of all the couplings in the standard model except those related to first two generations can be understood from the IR fixed point structure of renormalization group equations in the minimal supersymmetric model extended by one complete vectorlike family with the scale of new physics in a multi-TeV range.
We consider the Higgs boson decay processes and its production, and provide a parameterisation tailored for testing models of new physics beyond the Standard Model. We also compare our formalism to other existing parameterisations based on scaling fa
We construct a generalization of the cyclic $lambda$-deformed models of cite{Georgiou:2017oly} by relaxing the requirement that all the WZW models should have the same level $k$. Our theories are integrable and flow from a single UV point to differen
In this article we consider the Standard Model extended by a number of (light) right-handed neutrinos, and assume the presence of some heavy physics that cannot be directly produced, but can be probed by its low-energy effective interactions. Within
The electroweak symmetry breaking (EWSB) sector of the Standard Model can be far richer and more interesting than the usual single scalar doublet model. We explore scenarios where the EWSB sector is nearly scale invariant and consequently gives rise
We argue that there is a spontaneously broken rotational symmetry between space-time coordinates and gauge theoretical phases. The dilatonic mode acts as the massive Higgs boson, whose vacuum expectation value determines the gauge couplings. This mec