ﻻ يوجد ملخص باللغة العربية
The electroweak symmetry breaking (EWSB) sector of the Standard Model can be far richer and more interesting than the usual single scalar doublet model. We explore scenarios where the EWSB sector is nearly scale invariant and consequently gives rise to a light CP even scalar particle. The one-doublet SM is in that category, as are many other models with either weakly or strongly coupled sectors that trigger EWSB. We study the couplings of the light scalar to the SM particles that can arise from the explicit breaking of scale invariance focusing on the possible differences with the minimal SM. The couplings of the light scalar to light fermions, as well as to the massless gauge bosons, can be significantly enhanced. We find possible new discovery channels due to the decays of the conformal scalar into e^+e^- and mu^+mu^- pairs as well as new production channels via light quark annihilation.
This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising a
This report summarises the physics opportunities in the search and study of physics beyond the Standard Model at a 100 TeV pp collider.
The high-energy scattering of massive electroweak bosons, known as vector boson scattering (VBS), is a sensitive probe of new physics. VBS signatures will be thoroughly and systematically investigated at the LHC with the large data samples available
We consider flavor constraints on, and collider signatures of, Asymmetric Dark Matter (ADM) via higher dimension operators. In the supersymmetric models we consider, R-parity violating (RPV) operators carrying B-L interact with n dark matter (DM) par
We discuss how naturalness predicts the scale of new physics. Two conditions on the scale are considered. The first is the more conservative condition due to Veltman (Acta Phys. Polon. B 12, 437 (1981)). It requires that radiative corrections to the