ﻻ يوجد ملخص باللغة العربية
Scalar dark matter (DM) in a theory introduces hierarchy problems, and suffers from the inability to predict the preferred mass range for the DM. In a WIMP-like minimal scalar DM set-up we show that the infinite derivative theory can predict DM mass and its coupling. The scale of non-locality (M) in such a theory in its lower-most limit (constrained by LHC) implies a DM mass $sim$ TeV and a coupling with the Standard Model (SM) Higgs $lambda_mathrm{HS} sim 10^{-2}$. Planned DM direct detection experiments reaching such sensitivity in the DM will effectively translate into lower bounds on the scale at which the non-locality comes into the play. Self-interactions of DM and its impact on vacuum stability in this model are also discussed in the context.
We study discovery prospects for a real triplet extension of the Standard Model scalar sector at the Large Hadron Collider (LHC) and a possible future 100 TeV $pp$ collider. We focus on the scenario in which the neutral triplet scalar is stable and c
The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and to consist of new stable particles. However if composite dark matter contains stable electrically charged leptons an
We show that proton storage ring experiments designed to search for proton electric dipole moments can also be used to look for the nearly dc spin precession induced by dark energy and ultra-light dark matter. These experiments are sensitive to both
We study a $Z_2 times Z_2$ symmetric 3-Higgs Doublet Model (3HDM), wherein two of the doublets are inert and one is active (thus denoted in literature as I(2+1)HDM), yielding a two-component Dark Matter (DM) sector. The two DM candidates emerge as th
We perform a systematic study of the phenomenology associated to models where the dark matter consists in the neutral component of a scalar SU(2)_L n-uplet, up to n=7. If one includes only the pure gauge induced annihilation cross-sections it is know