ﻻ يوجد ملخص باللغة العربية
We study discovery prospects for a real triplet extension of the Standard Model scalar sector at the Large Hadron Collider (LHC) and a possible future 100 TeV $pp$ collider. We focus on the scenario in which the neutral triplet scalar is stable and contributes to the dark matter relic density. When produced in $pp$ collisions, the charged triplet scalar decays to the neutral component plus a soft pion or soft lepton pair, yielding a disappearing charged track in the detector. We recast current 13TeV LHC searches for disappearing tracks, and find that the LHC presently excludes a real triplet scalar lighter than 248 (275) GeV, for a mass splitting of 172 (160) MeV with $mathcal{L}=rm36,$fb$^{-1}$. The reach can extend to 497 (520) GeV with the collection of $3000,$fb$^{-1}$. We extrapolate the 13 TeV analysis to a prospective 100 TeV $pp$ collider, and find that a $sim3$ TeV triplet scalar could be discoverable with $mathcal{L}=30$ ab$^{-1}$, depending on the degree to which pile up effects are under control. We also investigate the dark matter candidate in our model and corresponding present and prospective constraints from dark matter direct detection. We find that currently XENON1T can exclude a real triplet dark matter lighter than $sim3$ TeV for a Higgs portal coupling of order one or larger, and the future XENON20T will cover almost the entire dark matter viable parameter space except for vanishingly small portal coupling.
Real scalar triplet dark matter, which is known to be an attractive candidate for a thermal WIMP, is comprehensively studied paying particular attention to the Sommerfeld effect on the dark matter annihilation caused by the weak interaction and the o
We examine the collider and dark matter phenomenology of the Standard Model extended by a hypercharge-zero SU(2) triplet scalar and gauge singlet scalar. In particular, we study the scenario where the singlet and triplet are both charged under a sing
Scalar dark matter (DM) in a theory introduces hierarchy problems, and suffers from the inability to predict the preferred mass range for the DM. In a WIMP-like minimal scalar DM set-up we show that the infinite derivative theory can predict DM mass
The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and to consist of new stable particles. However if composite dark matter contains stable electrically charged leptons an
We show that proton storage ring experiments designed to search for proton electric dipole moments can also be used to look for the nearly dc spin precession induced by dark energy and ultra-light dark matter. These experiments are sensitive to both