ﻻ يوجد ملخص باللغة العربية
Faraday rotation of polarized emission from pulsars measured at radio frequencies provides a powerful tool to investigate the interstellar and interplanetary magnetic fields. However, besides being sensitive to the astrophysical media, pulsar observations in radio are affected by the highly time-variable ionosphere. In this article, the amount of ionospheric Faraday rotation has been computed by assuming a thin layer model. For this aim, ionospheric maps of the free electron density (based on Global Positioning System data) and semi-empirical geomagnetic models are needed. Through the data of five highly polarized pulsars observed with the individual German LOw-Frequency ARray stations, we investigate the performances of the ionospheric modelling. In addition, we estimate the parameters of the systematics and the correlated noise generated by the residual unmodelled ionospheric effects, and show the comparison of the different free-electron density maps. For the best ionospheric maps, we have found that the rotation measure corrections on one-year timescales after subtraction of diurnal periodicity are accurate to $sim$ 0.06--0.07 rad m$^{-2}$.
Using commissioning data from the first year of operation of the Canadian Hydrogen Intensity Mapping Experiments (CHIME) Pulsar backend system, we conduct a systematic analysis of the Faraday Rotation Measure (RM) of the northern hemisphere pulsars d
Measuring the properties of extragalactic magnetic fields through the effect of Faraday rotation provides a means to understand the origin and evolution of cosmic magnetism. Here we use data from the LOFAR Two-Metre Sky Survey (LoTSS) to calculate th
A number of hardware upgrades for the Low-Frequency Array (LOFAR) are currently under development. These upgrades are collectively referred to as the LOFAR 2.0 upgrade. The first stage of LOFAR 2.0 will introduce a distributed clock signal and allow
LOFAR is the LOw Frequency Radio interferometer ARray located at mid-latitude ($52^{circ} 53N$). Here, we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show th
We determined Faraday rotation measures (RMs) towards 137 pulsars in the northern sky, using Low-Frequency Array (LOFAR) observations at 110-190 MHz. This low-frequency RM catalogue, the largest to date, improves the precision of existing RM measurem