ﻻ يوجد ملخص باللغة العربية
We determined Faraday rotation measures (RMs) towards 137 pulsars in the northern sky, using Low-Frequency Array (LOFAR) observations at 110-190 MHz. This low-frequency RM catalogue, the largest to date, improves the precision of existing RM measurements on average by a factor of 20 - due to the low frequency and wide bandwidth of the data, aided by the RM synthesis method. We report RMs towards 25 pulsars for the first time. The RMs were corrected for ionospheric Faraday rotation to increase the accuracy of our catalogue to approximately 0.1 rad m$^{rm -2}$. The ionospheric RM correction is currently the largest contributor to the measurement uncertainty. In addition, we find that the Faraday dispersion functions towards pulsars are extremely Faraday thin - mostly less than 0.001 rad m$^{rm -2}$. We use these new precise RM measurements (in combination with existing RMs, dispersion measures, and distance estimates) to estimate the scale height of the Galactic halo magnetic field: 2.0$pm$0.3 kpc for Galactic quadrants I and II above and below the Galactic plane (we also evaluate the scale height for these regions individually). Overall, our initial low-frequency catalogue provides valuable information about the 3-D structure of the Galactic magnetic field.
Using commissioning data from the first year of operation of the Canadian Hydrogen Intensity Mapping Experiments (CHIME) Pulsar backend system, we conduct a systematic analysis of the Faraday Rotation Measure (RM) of the northern hemisphere pulsars d
We present new 6 and 20 cm Very Large Array (VLA) observations of polarized continuum emission of roughly 0.5 square degrees of the Galactic center (GC) region. The 6 cm observations detect diffuse linearly-polarized emission throughout the region wi
We investigate the number and type of pulsars that will be discovered with the low-frequency radio telescope LOFAR. We consider different search strategies for the Galaxy, for globular clusters and for other galaxies. We show that a 25-day all-sky Ga
RM Synthesis was recently developed as a new tool for the interpretation of polarized emission data in order to separate the contributions of different sources lying on the same line of sight. Until now the method was mainly applied to discrete sourc