ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of the FRW universe with decaying metastable dark energy --- a dynamical system analysis

255   0   0.0 ( 0 )
 نشر من قبل Marek Szydlowski
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a cosmological model in which dark energy identified with the vacuum energy which is running and decaying. In this model vacuum is metastable and decays into a bare (true) vacuum. This decaying process has a quantum nature and is described by tools of the quantum decay theory of unstable systems. We have found formulas for an asymptotic behavior of the energy density of dark energy in the form of a series of inverse powers of the cosmological time. We investigate the dynamics of FRW models using dynamical system methods as well as searching for exact solutions. From dynamical analysis we obtain different evolutional scenarios admissible for all initial conditions. For the interpretation of the dynamical evolution caused by the decay of the quantum vacuum we study the thermodynamics of the apparent horizon of the model as well as the evolution of the temperature. For the early Universe, we found that the quantum effects modified the evolution of the temperature of the Universe. In our model the adiabatic approximation is valid and the quantum vacuum decay occurs with an adequate unknown particle which constitutes quantum vacuum. We argue that the late-time evolution of metastable energy is the holographic dark energy.



قيم البحث

اقرأ أيضاً

In this study we consider an exponential decaying form for dark energy as EoS parameter in order to discuss the dynamics of the universe. Firstly, assuming that universe is filled with an ideal fluid which consists of exponential decaying dark energy we obtain time dependent behavior of several physical quantities such as energy density, pressure and others for dark energy, dark energy-matter coupling and non-coupling cases. Secondly, using scalar field instead of an ideal fluid we obtain these physical quantities in terms of scalar potential and kinetic term for the same cases in scalar-tensor formalism. Finally we show that ideal fluid and scalar-tensor description of dark energy give mathematically equivalent results for this EoS parameter.
A phenomenological generalized ghost dark energy model has been studied under the framework of FRW universe. In ghost dark energy model the energy density depends linearly on Hubble parameter (H) but in this dark energy model, the energy density cont ains a the sub-leading term which is depends on $mathcal{O} (H^2)$, so the energy density takes the form $rho_D=alpha H+ beta H^2$, where $alpha$ and $beta$ are the constants. The solutions of the Friedman equation of our model leads to a stable universe. We have fitted our model with the present observational data including Stern data set. With the help of best fit results we find the adiabatic sound speed remains positive throughout the cosmic evolution, that claims the stability of the model. The flipping of the signature of deceleration parameter at the value of scale factor $a=0.5$ indicates that the universe is at the stage of acceleration i.e. de Sitter phase of the universe at late time. Our model shows that the acceleration of the universe begin at redshift $z_{ace}approx 0.617$ and the model is also consistent with the current observational data.
We derive the Shafieloo, Hazra, Sahni and Starobinsky (SHSS) phenomenological formula for the radioactive-like decay of metastable dark energy directly from the quantum mechanics principles. For this aim we use the Fock-Krylov theory of quantum unsta ble states. We obtain deeper insight on the decay process as having three basic phases: the phase of radioactive decay, the next phase of damping oscillations, and finally the phase of power law decaying. We consider the cosmological model with matter and dark energy in the form of decaying metastable dark energy and study its dynamics in the framework of non-conservative cosmology with an interacting term determined by the running cosmological parameter. We study cosmological implications of metastable dark energy and estimate the characteristic time of ending of the radioactive-like decay epoch as 22296 of the present age of the Universe. We also confront the model with astronomical data which show that the model is in good agreement with the observations. Our general conclusion is that we are living in the epoch of the radioactive-like decay of metastable dark energy which is a relict of the quantum age of the Universe.
We consider a spatially flat FLRW universe. We assume that it is filled with dark energy in the form of logotropic dark fluid coupled with dark matter in the form of a perfect fluid having a barotropic equation of state. We employ dynamical system to ols to obtain a complete qualitative idea of the evolution of such a universe. It is interesting to note that we ought to consider an approximation for the pressure of the logotropic dark fluid in the form of an infinite series so as to be able to construct the autonomous system required for a dynamical system study. This series form provides us with a power law in the rest-mass energy density of the logotropic dark fluid. We compute the critical points of the autonomous system and analyze these critical points by applying linear stability theory. Our analysis reveal a scenario of late-time accelerated universe dominated by the logotropic fluid which behaves as cosmological constant, preceded by an intermediate phase of the Universe dominated by logotropic fluid which behaves as dark matter in the form of perfect fluid. Moreover, it also crosses the phantom divide line.
In this work, we study a cosmological model of spatially homogeneous and isotropic accelerating universe which exhibits a transition from deceleration to acceleration. For this, Friedmann Robertson Walker(FRW) metric is taken and Hybrid expansion law $a(t)=t^{alpha} exp(beta t )$ is proposed and derived. We consider the universe to be filled with two types of fluids barotropic and dark energy which have variable equations of state. The evolution of dark energy, Hubble, and deceleration parameters etc., have been described in the form of tables and figures. We consider $581$ datas of observed values of distance modulus of various SNe Ia type supernovae from union $2.1$ compilation to compare our theoretical results with observations and found that model satisfies current observational constraints. We have also calculated the time and redshift at which acceleration in the Universe had commenced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا