ﻻ يوجد ملخص باللغة العربية
Localizing a cloud of points from noisy measurements of a subset of pairwise distances has applications in various areas, such as sensor network localization and reconstruction of protein conformations from NMR measurements. In [1], Drineas et al. proposed a natural two-stage approach, named SVD-MDS, for this purpose. This approach consists of a low-rank matrix completion algorithm, named SVD-Reconstruct, to estimate random missing distances, and the classic multidimensional scaling (MDS) method to estimate the positions of nodes. In this paper, we present a detailed analysis for this method. More specifically, we first establish error bounds for Euclidean distance matrix (EDM) completion in both expectation and tail forms. Utilizing these results, we then derive the error bound for the recovered positions of nodes. In order to assess the performance of SVD-Reconstruct, we present the minimax lower bound of the zero-diagonal, symmetric, low-rank matrix completion problem by Fanos method. This result reveals that when the noise level is low, the SVD-Reconstruct approach for Euclidean distance matrix completion is suboptimal in the minimax sense; when the noise level is high, SVD-Reconstruct can achieve the optimal rate up to a constant factor.
In this paper, we propose a mechanism on the constructions of MDS codes with arbitrary dimensions of Euclidean hulls. Precisely, we construct (extended) generalized Reed-Solomon(GRS) codes with assigned dimensions of Euclidean hulls from self-orthogo
In this paper, a criterion of MDS Euclidean self-orthogonal codes is presented. New MDS Euclidean self-dual codes and self-orthogonal codes are constructed via this criterion. In particular, among our constructions, for large square $q$, about $frac{
The parameters of a $q$-ary MDS Euclidean self-dual codes are completely determined by its length and the construction of MDS Euclidean self-dual codes with new length has been widely investigated in recent years. In this paper, we give a further stu
In this paper, we construct several classes of maximum distance separable (MDS) codes via generalized Reed-Solomon (GRS) codes and extended GRS codes, where we can determine the dimensions of their Euclidean hulls or Hermitian hulls. It turns out tha
Streaming codes represent a packet-level FEC scheme for achieving reliable, low-latency communication. In the literature on streaming codes, the commonly-assumed Gilbert-Elliott channel model, is replaced by a more tractable, delay-constrained, slidi