ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering Large Anisotropic Magnetoresistance in La0.7Sr0.3MnO3 Films at Room Temperature

436   0   0.0 ( 0 )
 نشر من قبل Paolo Perna Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetoresistance (MR) effect is widely employed in technologies that pervade our world from magnetic reading heads to sensors. Diverse contributions to MR, such as anisotropic, giant, tunnel, colossal, and spin-Hall, are revealed in materials depending on the specific system and measuring configuration. Half-metallic manganites hold promise for spintronic applications but the complexity of competing interactions has not permitted the understanding and control of their magnetotransport properties to enable the realization of their technological potential. Here we report on the ability to induce a dominant switchable magnetoresistance in La0.7Sr0.3MnO3 epitaxial films, at room temperature (RT). By engineering an extrinsic magnetic anisotropy, we show a large enhancement of anisotropic magnetoresistance (AMR) which leads to, at RT, signal changes much larger than the other contributions such as the colossal magnetoresistance (CMR). The dominant extrinsic AMR exhibits large variation in the resistance in low field region, showing high sensitivity to applied low magnetic fields. These findings have a strong impact on the real applications of manganite based devices for the high-resolution low field magnetic sensors or spintronics.



قيم البحث

اقرأ أيضاً

We report on the discovery of a large, room temperature magnetoresistance (MR) effect in polyfluorene sandwich devices in weak magnetic fields. We characterize this effect and discuss its dependence on voltage, temperature, film thickness, electrode materials, and (unintentional) impurity concentration. We usually observed negative MR, but positive MR can also be achieved under high applied electric fields. The MR effect reaches up to 10% at fields of 10mT at room temperature. The effect shows only a weak temperature dependence and is independent of the sign and direction of the magnetic field. We find that the effect is related to the hole current in the devices.
113 - A.B. Shick , F. Maca , J. Masek 2006
Tunneling anisotropic magnetoresistance (TAMR) effect, discovered recently in (Ga,Mn)As ferromagnetic semiconductors, arises from spin-orbit coupling and reflects the dependence of the tunneling density of states in a ferromagnetic layer on orientati on of the magnetic moment. Based on ab initio relativistic calculations of the anisotropy in the density of states we predict sizable TAMR effects in room-temperature metallic ferromagnets. This opens prospect for new spintronic devices with a simpler geometry as these do not require antiferromagnetically coupled contacts on either side of the tunnel junction. We focus on several model systems ranging from simple hcp-Co to more complex ferromagnetic structures with enhanced spin-orbit coupling, namely bulk and thin film L1$_0$-CoPt ordered alloys and a monatomic-Co chain at a Pt surface step edge. Reliability of the predicted density of states anisotropies is confirmed by comparing quantitatively our ab initio results for the magnetocrystalline anisotropies in these systems with experimental data.
Quantum-well (QW) devices have been extensively investigated in semiconductor structures. More recently, spin-polarized QWs were integrated into magnetic tunnel junctions (MTJs). In this work, we demonstrate the spin-based control of the quantized st ates in iron $3d$-band QWs, as observed in experiments and theoretical calculations. We find that the magnetization rotation in the Fe QWs significantly shifts the QW quantization levels, which modulate the resonant-tunneling current in MTJs, resulting in a tunneling anisotropic magnetoresistance (TAMR) effect of QWs. This QW-TAMR effect is sizable compared to other types of TAMR effect, and it is present above the room-temperature. In a QW MTJ of Cr/Fe/MgAl$_2$O$_4$/top electrode, where the QW is formed by a mismatch between Cr and Fe in the $d$ band with $Delta_1$ symmetry, a QW-TAMR ratio of up to 5.4 % was observed at 5 K, which persisted to 1.2 % even at 380K. The magnetic control of QW transport can open new applications for spin-coupled optoelectronic devices, ultra-thin sensors, and memories.
Topological insulators are insulating in the bulk but possess spin-momentum locked metallic surface states protected by time-reversal symmetry. The existence of these surface states has been confirmed by angle-resolved photoemission spectroscopy (ARP ES) and scanning tunneling microscopy (STM). Detecting these surface states by transport measurement, which might at first appear to be the most direct avenue, was shown to be much more challenging than expected. Here, we report a detailed electronic transport study in high quality Bi2Se3 topological insulator thin films. Measurements under in-plane magnetic field, along and perpendicular to the bias current show opposite magnetoresistance. We argue that this contrasting behavior is related to the locking of the spin and current direction providing evidence for helical spin structure of the topological surface states.
We demonstrate that magnetic skyrmions with a mean diameter around 60 nm can be stabilized at room temperature and zero external magnetic field in an exchange-biased Pt/Co/NiFe/IrMn multilayer stack. This is achieved through an advanced optimization of the multilayer stack composition in order to balance the different magnetic energies controlling the skyrmion size and stability. Magnetic imaging is performed both with magnetic force microscopy and scanning Nitrogen-Vacancy magnetometry, the latter providing unambiguous measurements at zero external magnetic field. In such samples, we show that exchange bias provides an immunity of the skyrmion spin texture to moderate external magnetic field, in the tens of mT range, which is an important feature for applications as memory devices. These results establish exchange-biased multilayer stacks as a promising platform towards the effective realization of memory and logic devices based on magnetic skyrmions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا